×
25.08.2017
217.015.c5ba

Результат интеллектуальной деятельности: СПОСОБ СИНХРОННОГО УСКОРЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ

Вид РИД

Изобретение

№ охранного документа
0002618626
Дата охранного документа
05.05.2017
Аннотация: Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков времени пролета пучка. Азимутальная устойчивость ускоряемых частиц обеспечивается формой вершины индукционных импульсов. Замкнутые орбиты частиц при их ускорении формируются посредством многократного отражения частиц от диполей. В результате многократного отражения инжектированные частицы, с предельно низкой энергией, движутся по хордам кольцевой орбиты ускоренных частиц. Величина отклонения траекторий инжектированных и ускоренных частиц зависит от числа отражающих диполей. Вертикальную дефокусировку частиц полями отклоняющих диполей компенсируют на входе и выходе отклоняющих пучок секций. На прямолинейных участках частицы фокусируют квадрупольными линзами и после ускорения выводят их. Техническим результатом является расширение диапазона энергий ускоряемых частиц путем существенного уменьшения нижнего порога энергий, связанного с потерей частиц с малой энергией, а также возможность отказаться от применения пред-ускорителей частиц и упрощение эксплуатации ускорителя. 3 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований.

Известны способы ускорения с постоянным магнитным полем диполя, в котором заряженные частицы ускоряются высокочастотным электрическим полем и движутся по спиральной орбите из центра магнитного диполя, постепенно увеличивая радиус орбиты с ростом энергии: циклотроны, синхроциклотроны или фазотроны (например, Дж. Ливингуд «Принципы работы классических ускорителей», издательство иностранной литературы, Москва, 1963, с. 19-23). Способы ускорения с постоянным радиусом орбиты заряженных частиц в процессе ускорения и нарастающим во времени магнитным полем отклоняющих диполей в соответствии с ростом энергии частиц при ускорении высокочастотным полем: синхрофазотрон (например, Дж. Ливингуд «Принципы работы классических ускорителей», издательство иностранной литературы, Москва, 1963, с. 23-25, 199-234). Способ ускорения с почти постоянным радиусом орбиты частиц в процессе ускорения и постоянным во времени магнитным полем отклоняющих диполей (например, 1. Dolbilov G.V. The Induction Synchrotron with a Constant Magnetic Field // http://accelconf.web.cern.ch/AccelConf/rupac2014/papers/wepsb29, 2. Долбилов Г.В. Способ циклического ускорения заряженных частиц // Патент ОИЯИ, №2451435, 3. Долбилов Г.В. Циклический ускоритель заряженных частиц // Патент ОИЯИ, №2477936.)

Основным недостатком способов ускорения с постоянным магнитным полем диполя является ограничение максимальной энергии ускоренных частиц из-за большого веса диполя (сотни тысяч тонн), который пропорционален приблизительно кубу диаметра полюса диполя, т.е. максимальному импульсу ускоренных частиц.

Недостатком способов ускорения с постоянным радиусом в процессе ускорения и переменным магнитным полем диполей является необходимость формирования требуемой зависимости от времени магнитного поля диполей и формирования ускоряющего электрического высокочастотного поля с переменной частотой, соответствующей меняющему времени пролета частиц поля, а также необходимость создания пред-ускорителей (бустеров) для ускорения частиц до высоких энергий.

Способ ускорения частиц в постоянном магнитном поле и формирования почти постоянных замкнутых орбит с помощью диполей с однородным магнитным полем имеет ограничения на величину минимальной энергии инжекции частиц, связанные с потерей частиц с энергии, которая ниже критической.

В качестве прототипа выбираем способ ускорения с почти постоянным радиусом орбиты частиц в процессе ускорения и постоянным во времени магнитным полем отклоняющих диполей, который описан в работах: 1. Dolbilov G.V. The Induction Synchrotron with a Constant Magnetic Field // http://accelconf.web.cern.ch/AccelConf/rupac2014/papers/wepsb29, 2. Долбилов Г.В. Способ циклического ускорения заряженных частиц // Патент ОИЯИ, №2451435, 3. Долбилов Г.В. Циклический ускоритель заряженных частиц // Патент ОИЯИ, №2477936.) Этот способ заключается в том, что для создания замкнутых орбит частиц формируют дипольное магнитное поле с постоянным во времени и с пространственной конфигурацией, определяющейся азимутальной протяженностью диполя, которая позволяет во всем диапазоне ускоряемых энергий иметь небольшое отклонение орбит от орбиты с максимальной энергией в диполе и иметь совпадающие орбиты вне диполя, инжектируют в магнитное поле заряженные частицы, ускоряют частицы индукционным электрическим полем с частотой импульсов, кратной периоду обращения частиц в циклическом ускорителе, жестко фокусируют их на прямолинейных участках орбиты и выводят ускоренные частицы,

Предлагаемое изобретение решает задачу расширение диапазона энергий ускоряемых частиц путем существенного уменьшения нижнего порога энергий, связанного с потерей частиц с малой энергией. Кроме того, применение способа позволяет существенно снизить требования к инжектору частиц, отказаться от применения пред-ускорителей частиц, упростить и удешевить создание и эксплуатацию ускорителя.

Способ заключается в том, что полями магнитных диполей, величина индукции которых постоянна во времени, формируют орбиты частиц, близкие к равновесной орбите ускорителя, инжектируют частицы в ускоритель, ускоряют частицы индукционным электрическим полем с частотой импульсов кратной периоду обращения ускоряемых частиц, жестко фокусируют частицы и выводят их после ускорения, при этом формирование замкнутых орбит частиц производят путем многократного отражения частиц полями магнитных диполей по всей их орбите, в отражающих диполях формируют магнитное поле с величиной индукции, позволяющей отражать частицы под тем же углом, что и инжектируемые в диполь частицы, и с однородным распределением индукции вдоль продольной оси каждого диполя и с произвольным распределением индукции поперек их оси.

Отличительными признаками заявленного способа является следующее.

Формирование замкнутых орбит частиц производят путем многократного отражения частиц полями магнитных диполей по всей их орбите, при этом в отражающих диполях формируют магнитное поле с величиной индукции, позволяющей отражать частицы под тем же углом, что и инжектируемые в диполь частицы, и с однородным распределением индукции вдоль продольной оси каждого диполя, и с произвольным распределением индукции поперек их оси.

Поставленная цель достигается тем, что совокупность всех существенных признаков формулы позволяет формировать равенство углов инжекции пучка в диполь и углов отражения пучка от диполя независимо от энергии ускоряемых частиц и независимо от характера распределения магнитной индукции поперек продольной оси диполей, что позволяет отражать частицы и в краевых полях диполей частицы с малой энергией.

Перечень иллюстраций.

На фиг. 1 (Приложение 1) приведена схема ускорителя, использующего синхротронный способ ускорения в постоянном во времени магнитным полем,

где: 1 - отражающие магнитные диполи; 2 - прямолинейные участки орбиты; 3 - вакуумная камера отклоняющей пучок системы; 4 - корректоры динамики частиц в отклоняющей системе.

На фиг. 2 (Приложение 2) приведена схема отражения ускоряемых частиц магнитным диполем: 5 - отражающий магнитный диполь; 6 - траектория частиц с различными энергиями.

На фиг. 3 (Приложение 2) приведена схема способа отклонения пучка на угол 4α во всем диапазоне ускоряемых энергий, где 7 - отражающие пучок магнитные диполи; 8 - траектория входящих в отклоняющую систему частиц; 9 - траектории частиц в процессе ускорения; 10 - траектория выходящих из системы частиц.

Способ работает следующим образом. Заряженные частицы инжектируют на одном из прямолинейных участков орбиты 2, фиг. 1 (Приложение 1), длина которых может быть произвольной. Инжектированные частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков времени пролета пучка. Азимутальная устойчивость ускоряемых частиц обеспечивается формой вершины индукционных импульсов. Замкнутую орбиту частиц при их ускорении формируют посредством многократного отражения частиц от специальных диполей с постоянным магнитным полем. Пространственное распределение магнитного поля в каждом диполе таково, что углы падения и отражения частиц от диполя равны и не зависят от энергии ускоряемых частиц. В результате многократного отражения инжектированные частицы с предельно низкой энергией движутся по хордам кольцевой орбиты ускорителя. Величина отклонения траекторий инжектированных и ускоренных частиц зависит от числа пар отражающих диполей, фиг. 3 (Приложение 2). Число пар таких диполей на орбите определяется данной конкретной задачей. На фиг. 1 приведена схема ускорителя с шестью парами отражающих диполей, каждая из которых поворачивает (отклоняет) пучок на 60 градусов. Вертикальную дефокусировку частиц полями отражающих диполей компенсируют на входе и выходе отклоняющих пучок секций. Жесткую фокусировку частиц осуществляют на прямолинейных участках орбиты. Ускоренные частицы выводятся из ускорителя устройством, расположенным на прямолинейном участке орбиты.

В настоящее время в ускорительной технике широко применяются магнитные диполи (сверхпроводящие и «теплые») с уровнем магнитной индукции 1-2 Тесла, которой вполне достаточно для реализации способа. В способе используются традиционные секции линейного индукционного ускорителя с сердечниками индуктором из существующих ферромагнитных материалов. Синхронизация ускоряющих импульсов с импульсами тока пучка осуществляется традиционными методами с использованием мониторов времени пролета пучка.

Для примера рассмотрим ускоритель протонов на энергию 200 МэВ (ускоритель для медицинских целей). Поскольку частицы с максимальной для данного ускорителя энергией движутся в максимальном поле диполя, радиус их орбиты определяется выражением R=P/qBmax, где R - радиус орбиты, Р - импульс частицы, q - заряд частицы, В - индукция магнитного поля. При поле Bmax=2 Тл для протонов R=1.1 м.

Если величина индукции в сердечниках индукционных секций не превышает 0,1-0,2 Тл, потери энергии на перемагничивание сердечников будут малы и кпд ускорителя будет высоким.

Способ циклического ускорения заряженных частиц в постоянном магнитном поле, заключающийся в том, что полями магнитных диполей, величина индукции которых постоянна во времени, формируют орбиты частиц, близкие к равновесной орбите ускорителя, инжектируют частицы в ускоритель, ускоряют частицы импульсами индукционного электрического поля, которые с помощью датчиков времени пролета пучка синхронизуют с импульсами тока ускоряемых частиц, жестко фокусируют частицы и выводят их после ускорения, отличающийся тем, что формирование замкнутых орбит частиц производят путем многократного отражения заряженных частиц полями магнитных диполей по всей их орбите, при этом в отражающих диполях формируют магнитные поля с величиной индукции, позволяющей отражать частицы под тем же углом к продольной оси диполя, что и инжектируемые в диполь частицы, и с однородным распределением индукции вдоль продольной оси каждого диполя и произвольным распределением индукции поперек их оси.
СПОСОБ СИНХРОННОГО УСКОРЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ
СПОСОБ СИНХРОННОГО УСКОРЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ
СПОСОБ СИНХРОННОГО УСКОРЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 42.
10.07.2015
№216.013.5e58

Устройство для изготовления цилиндрических трубок для газонаполненных дрейфовых детекторов ионизирующего излучения

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения. Рабочий орган для ультразвуковой сварки представляет собой сонотрод со сферической рабочей поверхностью и установлен с...
Тип: Изобретение
Номер охранного документа: 0002555693
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.694c

Способ ускорения тела

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса...
Тип: Изобретение
Номер охранного документа: 0002558509
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c91

Способ определения пространственного распределения плотности в нанослое

Изобретение относится к области исследований слоистых наноструктур, в частности методике диагностики структуры наносистем. Способ определения пространственного распределения плотности атомов в нанослое состоит в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и...
Тип: Изобретение
Номер охранного документа: 0002559351
Дата охранного документа: 10.08.2015
20.12.2015
№216.013.9c3a

Анализатор состава вещества

Изобретение относится к спектральному анализу элементного состава вещества. В устройстве для спектрального анализа состава вещества на платформе на ВЧ генераторе расположены отдельно газовая, жидкостная и твердотельная горелки, которые подключены в порядке использования к штуцеру и к ВЧ...
Тип: Изобретение
Номер охранного документа: 0002571619
Дата охранного документа: 20.12.2015
20.03.2016
№216.014.cc0a

Устройство для измерения угла наклона плоскости

Устройство относится к области измерительной техники и может быть использовано в геодезии; при строительстве протяженных гидротехнических сооружений; при создании приборов и устройств, требующих привязки к уровню горизонта; а также в технике физического эксперимента. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002577804
Дата охранного документа: 20.03.2016
10.08.2016
№216.015.55be

Способ измерения спектра переданного импульса нейтронов

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды. Способ измерения спектра переданного импульса нейтронов включает прецессию магнитного момента нейтронов в двух областях...
Тип: Изобретение
Номер охранного документа: 0002593431
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55c5

Способ и устройство для измерения профиля нейтронного пучка (пучков)

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Способ измерения профиля нейтронного пучка (пучков) в плоскости, перпендикулярной выделенному его (их) направлению, заключается в том, что пучок (пучки)...
Тип: Изобретение
Номер охранного документа: 0002593433
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.823b

Способ настройки высокочастотного резонатора на резонансные частоты с заданной кратностью

Изобретение относится к технике высоких и сверхвысоких частот. Особенностью заявленного способа настройки высокочастотного резонатора с заданной кратностью является то, что настройка резонатора на резонансные частоты с заданной кратностью осуществляется в порядке убывания влияния настраиваемой...
Тип: Изобретение
Номер охранного документа: 0002601539
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8925

Устройство для измерения местоположения проволок в газовых проволочных камерах

Изобретение относится к газовым ионизационным многопроволочным камерам, в частности, к дрейфовым камерам с тонкостенными дрейфовыми трубками. Устройство для измерения местоположения проволок в газовых проволочных камерах в системе координат, связанной с несущей конструкцией камеры, включает...
Тип: Изобретение
Номер охранного документа: 0002602492
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a62a

Индукционный синхротрон с постоянным магнитным полем

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения,...
Тип: Изобретение
Номер охранного документа: 0002608365
Дата охранного документа: 18.01.2017
Показаны записи 21-30 из 41.
10.07.2015
№216.013.5e58

Устройство для изготовления цилиндрических трубок для газонаполненных дрейфовых детекторов ионизирующего излучения

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения. Рабочий орган для ультразвуковой сварки представляет собой сонотрод со сферической рабочей поверхностью и установлен с...
Тип: Изобретение
Номер охранного документа: 0002555693
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.694c

Способ ускорения тела

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса...
Тип: Изобретение
Номер охранного документа: 0002558509
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c91

Способ определения пространственного распределения плотности в нанослое

Изобретение относится к области исследований слоистых наноструктур, в частности методике диагностики структуры наносистем. Способ определения пространственного распределения плотности атомов в нанослое состоит в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и...
Тип: Изобретение
Номер охранного документа: 0002559351
Дата охранного документа: 10.08.2015
20.12.2015
№216.013.9c3a

Анализатор состава вещества

Изобретение относится к спектральному анализу элементного состава вещества. В устройстве для спектрального анализа состава вещества на платформе на ВЧ генераторе расположены отдельно газовая, жидкостная и твердотельная горелки, которые подключены в порядке использования к штуцеру и к ВЧ...
Тип: Изобретение
Номер охранного документа: 0002571619
Дата охранного документа: 20.12.2015
20.03.2016
№216.014.cc0a

Устройство для измерения угла наклона плоскости

Устройство относится к области измерительной техники и может быть использовано в геодезии; при строительстве протяженных гидротехнических сооружений; при создании приборов и устройств, требующих привязки к уровню горизонта; а также в технике физического эксперимента. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002577804
Дата охранного документа: 20.03.2016
10.08.2016
№216.015.55be

Способ измерения спектра переданного импульса нейтронов

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды. Способ измерения спектра переданного импульса нейтронов включает прецессию магнитного момента нейтронов в двух областях...
Тип: Изобретение
Номер охранного документа: 0002593431
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55c5

Способ и устройство для измерения профиля нейтронного пучка (пучков)

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Способ измерения профиля нейтронного пучка (пучков) в плоскости, перпендикулярной выделенному его (их) направлению, заключается в том, что пучок (пучки)...
Тип: Изобретение
Номер охранного документа: 0002593433
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.823b

Способ настройки высокочастотного резонатора на резонансные частоты с заданной кратностью

Изобретение относится к технике высоких и сверхвысоких частот. Особенностью заявленного способа настройки высокочастотного резонатора с заданной кратностью является то, что настройка резонатора на резонансные частоты с заданной кратностью осуществляется в порядке убывания влияния настраиваемой...
Тип: Изобретение
Номер охранного документа: 0002601539
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8925

Устройство для измерения местоположения проволок в газовых проволочных камерах

Изобретение относится к газовым ионизационным многопроволочным камерам, в частности, к дрейфовым камерам с тонкостенными дрейфовыми трубками. Устройство для измерения местоположения проволок в газовых проволочных камерах в системе координат, связанной с несущей конструкцией камеры, включает...
Тип: Изобретение
Номер охранного документа: 0002602492
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a62a

Индукционный синхротрон с постоянным магнитным полем

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения,...
Тип: Изобретение
Номер охранного документа: 0002608365
Дата охранного документа: 18.01.2017
+ добавить свой РИД