×
25.08.2017
217.015.c4e3

СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных, синтетических и биологических объектов. Сущность заявляемого способа заключается в том, что определение антиоксидантной активности проводят по изменению потенциала, регистрируемого при взаимодействии термически генерируемых радикалов с исследуемым образцом в растворе. Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, расширение круга исследуемых веществ, а также получение данных в универсальных единицах измерения, что позволяет проводить сравнительный анализ как индивидуальных соединений, так и сложных объектов. 2 з.п. ф-лы, 8 ил., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности.

Известен способ определения антиоксидантной активности путем изучения кинетики восстановления стабильного радикала 2,2’-дифенил-1-пикригидразила, уменьшение концентрации которого фиксируется спектрофотометрически при длине волны 515 нм (Brand-Williams W., Cuvelier М.Е., Berset С. // LWT - Food Sci. Technol., 1995, V. 28, No.l, P. 25-30). Недостатками данного способа являются неоднозначность данных, получаемых при анализе окрашенных объектов, а также то, что получаемые результаты выражены в относительных единицах, что затрудняет их интерпретацию.

Известен способ определения антиоксидантной активности путем оценки ингибирования свободных радикалов, основанный на реакции восстановления антиоксидантом хромогенного радикала , уменьшение концентрации которого фиксируется спектрофотометрически (Re R., Pellegrini N., Proteggente A., Pannala A., Yang M, Rice-Evans C. // Free Radic. Biol. Med., 1999, V.26, P. 1231-1237). К недостаткам данного способа относятся нестабильность используемых растворов и сложность интерпретации данных при анализе окрашенных объектов.

Наиболее близким решением служит способ определения антиоксидантной активности путем мониторинга изменения люминесценции в ходе реакции инициируемых радикалов с анализируемым образцом [Международная публикация US 5395755]. При добавлении к раствору радикального инициатора анализируемого образца, содержащего антиоксиданты, происходит уменьшение люминесцентного сигнала. Период индукции, т.е. период времени, в течение которого наблюдается уменьшение люминесценции, является характеристикой содержания антиоксидантов в анализируемом образце.

К недостаткам данного способа относится то, что использование люминесценции не позволяет проводить измерения в окрашенных объектах, а также то, что результаты измерений получены путем сравнения с люминесцентными кривыми эталонных антиоксидантов, что делает этот метод относительным. Кроме того, следует отметить сложность процедуры обработки получаемых результатов.

Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, расширение круга исследуемых веществ, а также получение данных в универсальных единицах измерения, что позволяет проводить сравнительный анализ как индивидуальных соединений, так и сложных объектов.

Указанная задача решается тем, что в способе определения антиоксидантной активности раствора анализируемого вещества, включающего приготовление исходного раствора радикального инициатора, генерирование радикалов в результате термического распада период индукции определяют по изменению окислительно-восстановительного потенциала системы за счет протекания химической реакции исследуемых образцов с генерируемыми радикалами, а антиоксидантную активность рассчитывают по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, M;

k - константа скорости генерирования. Для 37°C kAAPH=0,98⋅10-6 с-1, kAIPN=3,92⋅10-6 с-1.

τ - период индукции, c.

Период индукции измеряют как время от введения исследуемого раствора в раствор инициатора до точки перегиба зависимости потенциала от времени, которую определяют как максимум второй производной функции зависимости окислительно-восстановительного потенциала от времени. В качестве радикальных инициаторов используют азосоединения, например 2,2-азобис(2-метилпропионамидин) дигидрохлорида (ААРН), 2,2'-азобис[2-(2-имидазолин-2-ил)пропан]дигидрохлорид (AIPN).

Сущность заявляемого способа заключается в том, что определение антиоксидантной активности проводится потенциометрически и включает следующие этапы:

1) инициирование радикальной реакции путем термостатирования раствора инициатора в электрохимической ячейке с погруженными в нее рабочим электродом и электродом сравнения при температуре 37°C; в качестве инициатора используются 2,2-азобис(2-метилпропионамидин) дигидрохлорида (ААРН) и 2,2'-азобис[2-(2-имидазолин-2-ил)пропан]дигидрохлорид (AIPN); уравнение генерирования:

2) добавление анализируемого образца в электрохимическую ячейку, в результате чего наблюдается изменение потенциала реакционной смеси за счет протекания реакции:

,

где AO - антиоксидант, - продукт окисления антиоксиданта, n - стехиометрический коэффициент реакции, зависящий от количества функциональных групп в молекуле антиоксиданта, отвечающих за его антиоксидантные свойства.

3) определение времени полного расходования антиоксиданта в реакционной смеси (периода индукции); Период индукции определяется как время от введения исследуемого раствора в раствор инициатора до точки перегиба зависимости потенциала от времени, которая определяется как максимум второй производной функции зависимости окислительно-восстановительного потенциала от времени.

4) определение антиоксидантной активности анализируемого раствора по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, M;

k - константа скорости генерирования (для 37°C kAAPH=0,98⋅10-6 с-1, kAIPN=3,92⋅10-6 с-1.

τ - период индукции, c.

В качестве растворителя используют воду.

Рабочим электродом может служить платиновый электрод, в качестве электрода сравнения может быть использован стандартный хлоридсеребряный электрод.

Указанные отличия существенны. За счет использования потенциометрического способа регистрации аналитического сигнала увеличивается точность и чувствительность измерений, а также появляется возможность анализа окрашенных и мутных растворов, в том числе сложных биологических объектов. Кроме того, результаты анализа выражены в универсальных единицах концентрации - моль-эквивалентов в литре, что облегчает интерпретацию данных.

В настоящее время из патентной и научно-технической литературы неизвестен способ определения антиоксидантной активности в заявляемой совокупности признаков. Впервые применен потенциометрический метод для решения данной задачи.

На фиг. 1 представлена зависимость потенциала от времени совместного инкубирования радикального инициатора 2,2-азобис(2-метилпропионамидин) дигидрохлорида (ААРН) с цистеином. На фиг. 2 зависимость второй производной потенциала от времени.

На фиг. 3 представлена зависимость потенциала от времени совместного инкубирования радикального инициатора 2,2-азобис(2-метилпропионамидин) дигидрохлорида (ААРН) с аскорбиновой кислотой. На фиг. 4 зависимость второй производной потенциала от времени.

На фиг. 5 представлена зависимость потенциала от времени совместного инкубирования радикального инициатора 2,2'-азобис[2-(2-имидазолин-2-ил)пропан]дигидрохлорид (AIPN) с глутатионом. На фиг. 6 зависимость второй производной потенциала от времени.

На фиг. 7 представлена зависимость потенциала от времени совместного инкубирования радикального инициатора 2,2-азобис(2-метилпропионамидин) дигидрохлорида (ААРН) с образцом крови крыс. На фиг. 8 зависимость второй производной потенциала от времени.

Способ иллюстрируется следующими примерами.

Пример 1

В 5 мл водного раствора, содержащего 0,1М ААРН, инкубируемый в термостатируемой ячейке при 37°C, опускают рабочий электрод и электрод сравнения и вносят 0,05 мл 0,01М цистеина (момент времени (1) на фиг. 1). Далее проводят измерение потенциала до тех пор, пока на зависимости потенциала от времени не появится точка перегиба, определяемая методом двойного дифференцирования (момент времени (2) на фиг. 1). Период индукции, определяемый как время от введения цистеина в раствор инициатора (момент времени (1) на фиг. 2) до максимума на зависимости d2E/dt от времени (момент времени (2) на фиг. 2), равен 525 c.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

где Cyst - цистеин, CystOx - продукт окисления цистеина.

Антиоксидантную активность рассчитывают по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, 0,1M;

k - константа скорости генерирования. Для 37°C kAAPH=0,98⋅10-6 с-1, kAIPN=3,92⋅10-6 с-1.

τ - период индукции, c.

Расчет показывает, что с учетом разбавления АОА равна 0,01 M-экв, что соответствует наличию одной функциональной группы в молекуле цистеина, определяющей его антиоксидантные свойства, т.е. n равно 1, что соответствует действительности.

Пример 2

В 5 мл водного раствора, содержащего 0,05М ААРН, инкубируемый в термостатируемой ячейке при 37°C, опускают рабочий электрод и электрод сравнения и вносят 0,05 мл 0,005М раствор аскорбиновой кислоты (момент времени (1) на фиг. 3). Далее проводят измерение потенциала до тех пор, пока на зависимости потенциала от времени не появится точка перегиба, определяемая методом двойного дифференцирования (момент времени (2) на фиг. 3). Период индукции, определяемый как время от введения аскорбиновой кислоты в раствор инициатора (момент времени (1) на фиг. 4) до максимума на зависимости d2E/dt от времени (момент времени (2) на фиг. 4), равен 963 c.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

где AK - аскорбиновая кислота, AKOx - продукт окисления аскорбиновой кислоты.

Антиоксидантную активность рассчитывают по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, 0,05M;

k - константа скорости генерирования. Для 37°C kAAPH=0,98⋅10-6 с-1, kAIPN=3,92⋅10-6 с-1.

τ - период индукции, c.

Расчет показывает, что с учетом разбавления АОА равна 0,01 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 3

В 5 мл водного раствора, содержащего ОДМ AIPN, инкубируемый в термостатируемой ячейке при 37°C, опускают рабочий электрод и электрод сравнения и вносят 0,05 мл 0,05М раствор глутатиона (момент времени (1) на фиг. 5). Далее проводят измерение потенциала до тех пор, пока на зависимости потенциала от времени не появится точка перегиба, определяемая методом двойного дифференцирования (момент времени (2) на фиг. 5). Период индукции, определяемый как время от введения глутатиона в раствор инициатора (момент времени (1) на фиг. 6) до максимума на зависимости d2E/dt от времени (момент времени (2) на фиг. 6), равен 630 c.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

где Glu - глутатион, GluOx - продукт окисления глутатиона. Антиоксидантную активность рассчитывают по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, 0,1M;

k - константа скорости генерирования. Для 37°C kAIPH=0,98⋅10-6 с-1.

τ - период индукции, c.

Расчет показывает, что с учетом разбавления АОА равна 0,05 М-экв, что соответствует наличию одной функциональных группы в молекуле глутатиона, определяющей его антиоксидантные свойства, т.е. n равно 1, что соответствует действительности.

Пример 4

В 5 мл водного раствора, содержащего 0,1М ААРН, инкубируемый в термостатируемой ячейке при 37°C, опускают рабочий электрод и электрод сравнения и вносят 0,1 мл гемолизированной крови крыс (момент времени (1) на фиг. 5). Далее проводят измерение потенциала до тех пор, пока на зависимости потенциала от времени не появится точка перегиба, определяемая методом двойного дифференцирования (момент времени (2) на фиг. 5). Период индукции, определяемый как время от введения крови в раствор инициатора (момент времени (1) на фиг. 6) до максимума на зависимости d2E/dt от времени (момент времени (2) на фиг. 6), равен 714 c.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

где АО - антиоксидантные соединения, находящиеся в образце крови крыс, AOOx - продукты окисления антиоксидантных соединений в образце крови крыс.

Антиоксидантную активность рассчитывают по формуле:

AOA=2k⋅C(In)⋅τ,

где AOA - антиоксидантная активность, М-экв;

C(In) - концентрация радикального инициатора, 0,1M;

k - константа скорости генерирования. Для 37°C kAAPH=0,98⋅10-6 с-1, kAIPN=3,92⋅10-6 с-1.

τ - период индукции, c.

Расчет показывает, что с учетом разбавления, АОА образца гемолизированной крови крыс равна 6,96⋅10-3 М-экв.

Таким образом, технических результат заключается в расширении арсенала уже имеющихся технических средств определения антиоксидантной активности, а именно нового потенциометрического способа определения АОА, который позволяет увеличить точность и чувствительность измерений, анализировать окрашенные и мутные растворы, в том числе сложные биологические объекты, выражать результаты в универсальных единицах.


СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 215.
25.08.2017
№217.015.b868

Ветрогидроэнергетическая установка с составными лопастями, использующая в потоке эффект магнуса (варианты)

Изобретение относится к области ветрогидроэнергетики. Ветрогидроэнергетическая установка с составными лопастями, использующая в потоке эффект Магнуса, содержит ветрогидроколесо с горизонтальной осью вращения, на которой закреплен электрогенератор, и радиально установленные на махах цилиндры с...
Тип: Изобретение
Номер охранного документа: 0002615287
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b942

Способ извлечения урана из подземной воды

Изобретение относится к галургии, в частности к извлечению урана из подземных вод. В предложенном способе, включающем сорбцию урана на цеолите, согласно заявляемому изобретению цеолит предварительно модифицируют путем нанесения на его поверхность гидроксидов меди (II) и никеля с получением...
Тип: Изобретение
Номер охранного документа: 0002615403
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bf43

Раствор для гидрохимического осаждения полупроводниковых пленок селенида индия

Изобретение относится к технологии получения селенида индия(III), широко используемого в микроэлектронике для получения детекторов ядерного излучения и при создании преобразователей солнечного излучения в качестве основы для такого материала, как диселенид меди(I) и индия CuInSe. Раствор для...
Тип: Изобретение
Номер охранного документа: 0002617168
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c14a

Способ получения нитевидного нитрида алюминия

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность...
Тип: Изобретение
Номер охранного документа: 0002617495
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c347

Способ получения оксида скандия из концентрата скандия

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. Способ получения оксида скандия включает растворение...
Тип: Изобретение
Номер охранного документа: 0002618012
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.c4c8

Способ извлечения урана из разбавленных растворов и природных вод

Изобретение относится к гидрометаллургии урана, в частности к способу извлечения и концентрирования урана из разбавленных растворов. Извлечение урана из раствора осуществляют сорбцией. В качестве сорбента используют смесь шунгита, гидроксида меди и гидроксида никеля при массовом соотношении...
Тип: Изобретение
Номер охранного документа: 0002618293
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.cee5

Магнитная система

Изобретение относится к электротехнике и может быть использовано в малогабаритных приборах ЯМР- и ЭПР-спектроскопии высокого спектрального разрешения. Технический результат состоит в повышении степени однородности магнитного поля в рабочей области системы и увеличении его напряженности....
Тип: Изобретение
Номер охранного документа: 0002620579
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d4d9

Рабочее вещество для термоэкзоэлектронной дозиметрии высокоэнергетического электронного излучения

Изобретение относится к термоэкзоэлектронной (ТЭЭ) дозиметрии электронного излучения и может быть пригодно для высокодозной дозиметрии электронного излучения высоких энергий (до 10 МэВ). Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения высоких энергией на основе...
Тип: Изобретение
Номер охранного документа: 0002622240
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.defd

Автодинный приёмопередатчик системы радиозондирования атмосферы

Изобретение относится к радиотехнике, в частности к радиолокации с активным ответом, и может быть использовано в аэрологических радиозондах систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи...
Тип: Изобретение
Номер охранного документа: 0002624993
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e347

Смеситель порошковых материалов гравитационного типа

Изобретение относится к устройствам для смешивания компонентов в виде порошков различных материалов для приготовления однородных смесей. Смеситель порошковых материалов включает камеру смешивания на подвижном колесе, ось которого закреплена в неподвижной станине и генератор движения,...
Тип: Изобретение
Номер охранного документа: 0002626102
Дата охранного документа: 21.07.2017
Показаны записи 51-60 из 78.
25.08.2017
№217.015.b868

Ветрогидроэнергетическая установка с составными лопастями, использующая в потоке эффект магнуса (варианты)

Изобретение относится к области ветрогидроэнергетики. Ветрогидроэнергетическая установка с составными лопастями, использующая в потоке эффект Магнуса, содержит ветрогидроколесо с горизонтальной осью вращения, на которой закреплен электрогенератор, и радиально установленные на махах цилиндры с...
Тип: Изобретение
Номер охранного документа: 0002615287
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b942

Способ извлечения урана из подземной воды

Изобретение относится к галургии, в частности к извлечению урана из подземных вод. В предложенном способе, включающем сорбцию урана на цеолите, согласно заявляемому изобретению цеолит предварительно модифицируют путем нанесения на его поверхность гидроксидов меди (II) и никеля с получением...
Тип: Изобретение
Номер охранного документа: 0002615403
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bf43

Раствор для гидрохимического осаждения полупроводниковых пленок селенида индия

Изобретение относится к технологии получения селенида индия(III), широко используемого в микроэлектронике для получения детекторов ядерного излучения и при создании преобразователей солнечного излучения в качестве основы для такого материала, как диселенид меди(I) и индия CuInSe. Раствор для...
Тип: Изобретение
Номер охранного документа: 0002617168
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c14a

Способ получения нитевидного нитрида алюминия

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность...
Тип: Изобретение
Номер охранного документа: 0002617495
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c347

Способ получения оксида скандия из концентрата скандия

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. Способ получения оксида скандия включает растворение...
Тип: Изобретение
Номер охранного документа: 0002618012
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.c4c8

Способ извлечения урана из разбавленных растворов и природных вод

Изобретение относится к гидрометаллургии урана, в частности к способу извлечения и концентрирования урана из разбавленных растворов. Извлечение урана из раствора осуществляют сорбцией. В качестве сорбента используют смесь шунгита, гидроксида меди и гидроксида никеля при массовом соотношении...
Тип: Изобретение
Номер охранного документа: 0002618293
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.cee5

Магнитная система

Изобретение относится к электротехнике и может быть использовано в малогабаритных приборах ЯМР- и ЭПР-спектроскопии высокого спектрального разрешения. Технический результат состоит в повышении степени однородности магнитного поля в рабочей области системы и увеличении его напряженности....
Тип: Изобретение
Номер охранного документа: 0002620579
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d4d9

Рабочее вещество для термоэкзоэлектронной дозиметрии высокоэнергетического электронного излучения

Изобретение относится к термоэкзоэлектронной (ТЭЭ) дозиметрии электронного излучения и может быть пригодно для высокодозной дозиметрии электронного излучения высоких энергий (до 10 МэВ). Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения высоких энергией на основе...
Тип: Изобретение
Номер охранного документа: 0002622240
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.defd

Автодинный приёмопередатчик системы радиозондирования атмосферы

Изобретение относится к радиотехнике, в частности к радиолокации с активным ответом, и может быть использовано в аэрологических радиозондах систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи...
Тип: Изобретение
Номер охранного документа: 0002624993
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e347

Смеситель порошковых материалов гравитационного типа

Изобретение относится к устройствам для смешивания компонентов в виде порошков различных материалов для приготовления однородных смесей. Смеситель порошковых материалов включает камеру смешивания на подвижном колесе, ось которого закреплена в неподвижной станине и генератор движения,...
Тип: Изобретение
Номер охранного документа: 0002626102
Дата охранного документа: 21.07.2017
+ добавить свой РИД