×
25.08.2017
217.015.c356

Результат интеллектуальной деятельности: Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству жидкого чугуна процессом жидкофазного восстановления Ромелт при переработке железосодержащих материалов высокой степени окисленности. В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов с температурой 1300-1500°C, содержанием FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO 0,8-1,4 и вязкостью 0,2-1 Па⋅с. Также подают угольный материал в количестве, обеспечивающем остаточное содержание FeO в шлаке на уровне 1,5-6,0%, энергоносители для барботажа шлака и кислород над шлаковой ванной для дожигания. Дополнительная печь является печью барботажного типа с жидкой шлаковой ванной или электропечью. Печь Ромелт и дополнительная печь соединены между собой желобом. Изобретение позволяет утилизировать железосодержащие отходы без предварительной подготовки, увеличить скорость восстановления оксидов железа, уменьшить потери железа со шлаком и исключить возможность неконтролируемого вскипания шлаковой ванны. 8 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к черной металлургии, а именно к производству жидкого углеродистого полупродукта и чугуна, но может найти применение и в других отраслях промышленности, например в цветной металлургии, производстве стройматериалов и т.д.

Известен способ управления процессом жидкофазного восстановления (например, классический Ромелт), включающий непрерывную загрузку в одну шлаковую ванну железосодержащих материалов различного минералогического состава, угля, извести, подачу кислорода и кислородсодержащего дутья в зоны выше и ниже уровня шлака, вывод образующегося металла, шлака и газов (Процесс Ромелт / В.А. Роменец [и др.] - М.: МИСиС, Издательский дом «Руда и металлы», 2005. с. 8).

Недостатком этого способа является управление процессом только на основании расчета расхода угля и кислорода по уравнениям материального баланса; при этом плавка осуществляется вне зависимости от вида и минералогического состава перерабатываемых железосодержащих материалов, включающих оксиды железа различного вида (FeO, Fe2O3, Fe3O4). Также не осуществляется контроль и учет соотношения оксидов железа в поступающем в печь материале, что приводит к уменьшению производительности процесса и возможному неконтролируемому вскипанию шлаковой ванны.

Наиболее близким к предлагаемому изобретению является «Способ управления процессом Ромелт» (RU 2182603, опубл. 20.05.2000 г.), согласно которому в ходе плавки поддерживают и регулируют содержание оксидов железа в шлаке на заданном уровне в зависимости от температуры шлака и состава газа за счет увеличения/уменьшения количества загружаемого угля и увеличения/уменьшения количества кислорода, подаваемого выше уровня фурм.

По этому способу управление процессом осуществляется также вне зависимости от минералогических характеристик загружаемого железосодержащего материала и соотношения в нем FeO/Fe2O3 в одной шлаковой ванне, куда подается весь уголь и известь, необходимые для полного восстановления оксидов и получения углеродистого полупродукта или чугуна.

Недостатком этого способа управления процессом является то, что при загрузке в печь железосодержащих материалов, имеющих различное отношение в них FeO/Fe2O3, не учитываются особенности и различия в механизме поведения при восстановлении в шлаковой ванне оксидов FeO и Fe2O3, а также не учитывается, что в зависимости от вида загружаемого оксида в шлаке будет содержаться различное конечное количество FeO.

Это приводит к тому, что при загрузке по упомянутому выше способу железосодержащих материалов, содержащих железо преимущественно в виде Fe2O3 (гематитовые, лимонитовые, гидрогематитовые руды, бурые железняки и др.), и отношении в них FeO/Fe2O3 меньше 0,8 снижается производительность печи Ромелт, увеличивается расход кислорода и угля, повышается содержание FeO в шлаке и увеличиваются потери железа, затрудняется управление процессом, повышаются риски неконтролируемого вскипания шлаковой ванны.

В изобретении достигается технический результат, заключающийся в

- возможности осуществления непрерывности технологического процесса переработки железосодержащих материалов с FeO/Fe2O3 менее 0,8, включая железосодержащие отходы и бедные железные руды, с выпуском продуктов плавки;

- возможности утилизации железосодержащих отходов крупностью 3-20 мм без применения предварительной подготовки железосодержащего сырья, в том числе окускования, грохочения, осушки и других подготовительных операций;

- увеличении скорости восстановления оксидов железа по заявляемому способу, что позволит уменьшить потери железа со шлаком до величины менее 5% по сравнению с плавкой высокоокисленных материалов классической технологией Ромелт;

- исключении возможности неконтролируемого вскипания шлаковой ванны.

Технический результат достигается следующим образом.

В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов с температурой 1300-1500°C, содержанием в нем FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с, угольный материал на шлаковую ванну печи Ромелт в количестве, обеспечивающем остаточное содержание FeO в шлаке на уровне 1,5-6,0%, энергоносители в шлаковую ванну для барботажа шлака и кислород над шлаковой ванной для дожигания, отводят чугун и шлак в жидком виде и отводят охлажденные газообразные продукты.

Указанный расплав железосодержащих материалов получают в дополнительной печи барботажного типа с жидкой шлаковой ванной, продуваемой дутьем, содержащим кислород, воздух и природный газ, в которую загружают исходный железосодержащий материал с соотношением FeO/Fe2O3 менее 0,8, флюсы, добавки и угольный материал в количестве, обеспечивающим на выходе из печи содержание FeO в шлаке в пределах 35-80% от суммарного содержания оксидов железа в шлаке.

В качестве энергоносителей используют кислород, воздух, природный газ.

В качестве флюса используются известь или известняк, и/или доломит.

В качестве добавок - кварцевый песок и глинозем.

Расплав железосодержащих материалов может быть получен также в электропечи.

Печь Ромелт и дополнительная печь соединены между собой желобом, а подача расплава железосодержащих материалов из шлакового отстойника дополнительной печи в печь Ромелт осуществляется сверху через свод печи или через ее торцевую стенку на уровне не ниже 0,5-1,0 м от горизонтальной оси амбразур фурм для дожигания.

Печь Ромелт и дополнительная печь разделены перегородкой с возможностью перетекания расплава железосодержащих материалов из дополнительной печи в печь Ромелт.

Изобретение поясняется чертежом, где приведена схема реализации предлагаемого технического решения с использованием печи барботажного типа. На чертеже показаны печь 1 Ромелт, дополнительная печь 2 барботажного типа, шлаковый отстойник 3 печи Ромелт, отстойник 4 чугуна печи Ромелт, барботажные фурмы 5 печи Ромелт, фурмы 6 для дожигания печи Ромелт, отверстие 7 для загрузки угля в печь Ромелт, шлаковый отстойник 8 дополнительной печи, барботажные фурмы 9 дополнительной печи, отверстия 10 для загрузки шихтовых материалов, желоб 11 для расплава, соединяющий печь Ромелт и дополнительную печь, котел-утилизатор 12 отходящих газов.

При работе печи жидкофазного восстановления Ромелт попадающий в жидкий шлак оксид трехвалентного железа (Fe2O3) частично диссоциирует (максимум на 20-30%), однако в шлаке остается его значительное количество. При этом установлено, что скорость жидкофазного восстановления оксидов Fe2O3 и FeO значительно отличаются. Так при восстановлении в лабораторной печи образцов шлаков на основе Fe2O3 (FeO/Fe2O3=0,13) скорость восстановления на начальном этапе была в два раза ниже, чем из шлаков с FeO/Fe2O3=3,18.

Это связано с тем, что при использовании железорудных материалов, в которых присутствует в значительном количестве железо в виде Fe2O3, процесс жидкофазного восстановления протекает последовательно:

,

а затем:

.

Однако в условиях классического процесса жидкофазного восстановления Ромелт, протекающего в одной ванне, образующееся жидкое железо будет окисляться поступающими с шихтой новыми порциями Fe2O3 по реакции:

.

Вторичное окисление железа оксидами трехвалентного железа при работе на рудах с высокой степенью окисленности резко тормозит скорость реакции жидкофазного восстановления, а следовательно, и производительность агрегата, повышает конечное содержание FeO в шлаке, увеличивая тем самым потери железа со шлаком и риски неконтролируемого вскипания шлака.

Температура расплава должна находиться в интервале температур 1300-1500°C, так как при этом обеспечивается оптимальная вязкость шлака в пределах 0,2-1 Па⋅с. Снижение температуры ниже 1300°C увеличит вязкость шлака, затруднит барботаж и увеличит потери железа; разогрев шлака выше 1500°C увеличит энергозатраты, приведет к чрезмерной подвижности шлака и уменьшению толщины гарнисажа на кессонах.

Содержание FeO в шлаке в пределах 35-80% от общего содержания оксидов железа в шлаке связано с кинетическими и термодинамическими особенностями восстановления и поведения высших оксидов железа в шлаковом расплаве. При температурах 1300-1500°C Fe2O3 диссоциирует на 30-35%, т.е. начинать восстановление гематита нужно выше этой величины; восстановление свыше 80%-ного содержания FeO от общего количества оксидов железа в шлаке не следует допускать из-за возможности локального образования металлического железа, которое будет окисляться гематитом руды.

Конечное содержание FeO в шлаке в пределах 1,5-6,0% связано с тем, что 1,5% этого оксида является кинетическим порогом для плавки при данных параметрах. Его снижение возможно только при перерасходе энергоносителей и потере производительности. При концентрации FeO в шлаке выше 6,0% увеличиваются риски неконтролируемого вскипания шлака и потери железа.

По предлагаемому способу железосодержащий материал с содержанием FeO/Fe2O3 меньше 0,8, уголь, флюс и добавки через отверстия 10 в своде загружают в дополнительную печь 2, в которую через барботажные фурмы 9 подают дутье, содержащее кислород, воздух и природный газ. Образующийся шлаковый расплав с температурой 1300-1500°C, содержанием в FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с через шлаковый отстойник 8 по желобу 11 перетекает в печь 1 Ромелт. В печь 1 Ромелт через отверстие 7 в своде подают уголь, энергоносители на барботажные фурмы 5 и кислород на фурмы 6 для дожигания. Образующийся при восстановлении чугун через переток попадает в сифонный отстойник 4 чугуна, а шлак с остаточным содержанием FeO 1,5-6,0% - в отстойник 3 шлака. Дымовые газы от печи 1 Ромелт и дополнительной печи 2 отводят через котел-утилизатор 12 отходящих газов.

Возможна также реализация предлагаемого способа, при котором дополнительная печь, в которой выплавляется расплав железосодержащих материалов, и печь Ромелт, в которой происходит восстановление оксидов железа и получение жидкого чугуна или углеродистого полупродукта, разделены перегородкой, через которую перетекает расплав железосодержащих материалов из дополнительной печи в печь Ромелт.

Пример осуществления способа.

В качестве примера для переработки железосодержащего материала используют фракции железной лимонитовой руды крупностью 3-20 мм без их предварительного окускования. Содержание Feобщ в данной руде составляет 38,5%, а отношение FeO/Fe2O3 составляет 0,13.

Исходный железосодержащий материал в виде железной лимонитовой руды, уголь, флюс и добавки загружают в дополнительную печь 2. Далее подают дутье, содержащее кислород, воздух и природный газ.

Образующийся шлаковый расплав с температурой 1300-1500°С, содержанием FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с перетекает в печь 1 Ромелт. В печь 1 Ромелт подают уголь, энергоносители и кислород для дожигания.

Образующийся при восстановлении чугун через переток попадает в сифонный отстойник 4 чугуна, а шлак с остаточным содержанием FeO 1,5-6,0% - в отстойник 3 шлака.

При этом удельные расходы угля и кислорода на тонну чугуна по данному способу составили 1090 кг/т и 1061 м3/т.

При сравнительном анализе с классическим способом Ромелт было рассчитано, что удельные расходы угля и кислорода на тонну чугуна составляют 1539 кг/т и 1356 м3/т.

Таким образом, предлагаемый способ устраняет не только возможность неконтролируемого вскипания шлаковой ванны, но и обеспечивает экономию расхода угля и кислорода по сравнению с классической технологией Ромелт.


Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности
Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности
Источник поступления информации: Роспатент

Показаны записи 291-300 из 323.
05.02.2020
№220.017.fe91

Способ изготовления керамических плавильных тиглей

Изобретение относится к производству плавильных тиглей и может быть использовано при работе с жаропрочными и химически активными сплавами. Огнеупорные шихтовые материалы смешивают с парафинсодержащей связкой и из полученной массы формуют тигель в металлической форме. В соответствии с заявленным...
Тип: Изобретение
Номер охранного документа: 0002713049
Дата охранного документа: 03.02.2020
08.02.2020
№220.018.001e

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств, деталей...
Тип: Изобретение
Номер охранного документа: 0002713526
Дата охранного документа: 05.02.2020
14.03.2020
№220.018.0bb9

Деформируемый свариваемый алюминиево-кальциевый сплав

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, пригодных для аргонодуговой сварки и допускающих нагревы до 350°С....
Тип: Изобретение
Номер охранного документа: 0002716568
Дата охранного документа: 12.03.2020
14.03.2020
№220.018.0bed

Способ напыления защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана

Изобретение относится к способам защиты легированных сплавов на основе титаналюминидов с преобладающей фазой γ-TiAl. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и стойкостью к окислению и предназначены для изготовления конструкций, работающих при высоких...
Тип: Изобретение
Номер охранного документа: 0002716570
Дата охранного документа: 12.03.2020
14.03.2020
№220.018.0c07

Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов, в том числе проволоки, диаметром менее 0,3 мм из алюминиево-кальциевого композиционного сплава из слитков промышленных...
Тип: Изобретение
Номер охранного документа: 0002716566
Дата охранного документа: 12.03.2020
19.03.2020
№220.018.0dc9

Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью

Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий...
Тип: Изобретение
Номер охранного документа: 0002716928
Дата охранного документа: 17.03.2020
19.03.2020
№220.018.0dcd

Применение наждачной бумаги в качестве протектора ультразвукового преобразователя

Использование: для изготовления протекторов ультразвуковых преобразователей поперечных волн. Сущность изобретения заключается в том, что в качестве материала протектора для ультразвукового преобразователя используют наждачную бумагу. На рабочую поверхность требующего протекторной защиты...
Тип: Изобретение
Номер охранного документа: 0002716854
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0e67

Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом

Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата...
Тип: Изобретение
Номер охранного документа: 0002717064
Дата охранного документа: 17.03.2020
27.03.2020
№220.018.10b8

Способ винтовой прокатки сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы...
Тип: Изобретение
Номер охранного документа: 0002717765
Дата охранного документа: 25.03.2020
27.03.2020
№220.018.10c7

Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)

Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных...
Тип: Изобретение
Номер охранного документа: 0002717764
Дата охранного документа: 25.03.2020
Показаны записи 181-181 из 181.
15.05.2023
№223.018.57b7

Металлическая рама каркаса здания или сооружения

Изобретение относится к строительству, а именно к металлическим рамам каркаса зданий и сооружений различного назначения. Технический результат изобретения – повышение несущей способности рам. Металлическая рама каркаса состоит из колонн и опирающихся на них ригелей. Колонны и ригели выполнены в...
Тип: Изобретение
Номер охранного документа: 0002767006
Дата охранного документа: 16.03.2022
+ добавить свой РИД