×
25.08.2017
217.015.c348

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЦЕМЕНТИРОВАННОГО КАРБИДА

Вид РИД

Изобретение

№ охранного документа
0002618035
Дата охранного документа
02.05.2017
Аннотация: Группа изобретений относится к получению цементированного карбида, который может быть использован для изготовления режущего инструмента. Способ включает стадии формирования шлама, содержащего жидкость для измельчения, порошки связующих металлов, первую порошковую фракцию и вторую порошковую фракцию, измельчение, сушку, прессование и спекание шлама. Первая порошковая фракция, полученная из лома рециркулированного цементированного карбида с использованием процесса извлечения Zn, включает такие элементы, как W, С, Со, и по меньшей мере один или более таких элементов, как Та, Ti, Nb, Cr, Zr, Hf и Mo. Вторая порошковая фракция включает первичное сырье из WC. При этом первую порошковую фракцию подвергают стадии предварительного измельчения до стадии формирования шлама для получения среднего размера зерен, составляющего от 0,2 до 1,5 мкм. Обеспечивается получение цементированного карбида, включающего мелкозернистую гамма-фазу. 2 н. и 16 з.п. ф-лы, 9 табл., 6 пр.

Настоящее изобретение относится к способу получения цементированного карбида с использованием рециркулированной гамма-фазы, содержащей цементированный карбид.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Возможность рециркулировать лом цементированного карбида представляет собой большой интерес, поскольку сырье, используемое при получении цементированного карбида, является дорогостоящим. Использование рециркулированного цементированного карбида существенно снизит затраты энергии и воздействие на окружающую среду по сравнению с использованием первичного сырья. Однако некоторые изделия из цементированного карбида не могут быть изготовлены из рециркулированного цементированного карбида без потери качества изделия по сравнению с использованием первичного сырья.

Рециркулирование цементированного карбида обычно осуществляют металлургическими или химическими способами, например, используя процесс извлечения цинка, электролитическое восстановление и экстракцию или окисление. В процессе извлечения цинка, иногда также называемом PRZ (технологическое рециркулирование цинка), лом цементированного карбида погружают в расплавленный цинк в электрической печи. Цинк затем дистиллируют при определенной температуре, после чего удаляют из печи. Остающийся порошок включает WC и связующий металл, обычно кобальт, отделенные один от другого. Это описано, например, в US 3,595,484.

Некоторые сорта цементированного карбида включают гамма-фазу, содержащую кубические карбиды, например NbC, TiC и TaC. Размер зерен такой гамма-фазы влияет на конечные свойства материала. Следовательно, важно контролировать рост зерен гамма-фазы во время спекания, для того чтобы избежать аномального роста зерен и кластеризации гамма-фазы. Один способ контроля роста зерен описан в ЕР 1526189 А1, согласно которому кубические карбиды предварительно легируют WC. Состав предварительно легированного порошка должен быть как можно ближе к равновесному составу гамма-фазы при температуре спекания. Это обеспечивает получение мелкозернистой гамма-фазы. Недостаток данного способа заключается в том, что для получения желаемой микроструктуры может быть использовано только первичное сырье. При рециркуляции цементированных карбидов, содержащих гамма-фазу, получаемые порошки могут иметь состав, отличный от состава при равновесии при температуре спекания.

В данной области техники известно получение цементированного карбида, содержащего две фракции WC, при этом обе фракции имеют различные размеры зерен, т.е. бимодальный гранулометрический состав WC.

В ЕР 0665308 А1 описан цементированный карбид, имеющий бимодальный гранулометрический состав WC. Получаемый цементированный карбид реализует повышенную стойкость к пластической деформации по сравнению с цементированным карбидом, имеющим нормальный гранулометрический состав.

В ЕР 0913489 В1 описан цементированный карбид, содержащий гамма-фазу, имеющую бимодальный гранулометрический состав WC, при этом некоторое количество WC добавляют в виде порошка, полученного в результате процесса извлечения Zn. Кубические карбиды, формирующие гамма-фазу, добавляют в виде первичных материалов.

Одной задачей настоящего изобретения является разработка способа получения цементированного карбида, включающего мелкозернистую гамма-фазу, с использованием рециркулированного цементированного карбида, содержащего кубические карбиды в виде сырья.

Другой задачей настоящего изобретения является получение цементированного карбида, включающего мелкозернистую гамма-фазу, реализующую такие же или улучшенные свойства по сравнению с цементированным карбидом, включающим мелкозернистую гамма-фазу, полученную из первичного сырья.

Было установлено, что в результате предварительного измельчения порошка PRZ до тонкого состояния до его смешивания с более крупной порошковой фракцией может быть получен цементированный карбид, реализующий такие же или улучшенные свойства по сравнению с цементированными карбидами, изготовленными из первичных материалов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способу получения цементированного карбида, включающему стадии формирования шлама, содержащего жидкость для измельчения, порошки связующих металлов, первую порошковую фракцию и вторую порошковую фракцию, измельчение, сушку, прессование и спекание шлама, согласно которому:

- первую порошковую фракцию получают из лома рециркулированного цементированного карбида, включающего такие элементы, как W, C, Co, и по меньшей мере один или более таких элементов, как Ta, Ti, Nb, Cr, Zr, Hf и Mo, а

- вторая порошковая фракция включает первичное сырье из WC и, возможно, карбиды и/или карбонитриды одного или более таких элементов, как Cr, Zr, W, Ta, Ti, Hf и Nb.

Первую порошковую фракцию получают из лома цементированного карбида с использованием процесса извлечения Zn. Первую порошковую фракцию подвергают стадии предварительного измельчения до стадии формирования шлама, включающего жидкость для измельчения, порошки связующих металлов, первую порошковую фракцию и вторую порошковую фракцию, для получения среднего размера зерен, составляющего от 0,2 до 1,5 мкм.

Порошок, составляющий первую порошковую фракцию, состоит из гамма-фазы, содержащей цементированный карбид, который был рециркулирован в результате процесса извлечения Zn, известного в данной области техники. Под процессом извлечения Zn в данном описании подразумевается, что лом цементированного карбида погружают в расплавленный цинк в электрической печи. В результате цинк образует сплав с металлической связующей фазой в цементированном карбиде, обычно кобальтом, тем самым разрывая связь между связующей фазой и карбидом. Затем цинк дистиллируют при определенной температуре и удаляют из печи. Остающийся продукт включает карбиды и связующую фазу, обычно кобальт, в виде отдельных фаз. Согласно данному изобретению все порошки, полученные в результате процесса извлечения Zn, независимо от варьирования параметров производства, могут быть использованы для первой порошковой фракции.

Порошок, составляющий первую порошковую фракцию, представляет собой порошок, состоящий из гамма-фазы, содержащей лом цементированного карбида, извлеченного в результате процесса извлечения Zn, который был предварительно измельчен до заданного размера зерен, составляющего от 0,2 до 1,5 мкм, предпочтительно, от 0,2 до 1,0 мкм (FSSS). Все упомянутые здесь размеры зерен, относящиеся к порошкам, при отсутствии иных указаний получены в результате FSSS.

Предварительное измельчение предпочтительно осуществляют, формируя шлам, который соответствующим образом измельчают в шаровой мельнице или аттриторе (мельнице тонкого помола) в течение достаточного периода времени для получения желаемого среднего размера зерен порошка. Продолжительность измельчения варьируется, поскольку она зависит как от типа используемой мельницы, так и от качества измельчаемых порошков. Порошок измельчают в течение периода времени, достаточного для получения желаемого размера зерен порошка. Подходящая продолжительность измельчения первой порошковой фракции составляет от 50 до 120 часов в шаровой мельнице или от 15 до 35 часов в аттриторе.

В одном варианте воплощения настоящего изобретения может быть использован процесс измельчения, описанный в US 2012/0111976.

Может быть использована любая жидкость, обычно используемая в качестве жидкости для измельчения при традиционном получении цементированного карбида. Жидкость для измельчения предпочтительно представляет собой воду, спирт или органический растворитель, более предпочтительно - воду или смесь воды и спирта, и наиболее предпочтительно - смесь воды и этанола. Свойства шлама зависят от количества добавляемой жидкости для измельчения. Поскольку сушка шлама энергозатратна, количество жидкости должно быть минимизировано с целью снижения расходов. Однако следует использовать достаточное количество жидкости для того, чтобы получить пригодный для перекачивания шлам и избежать засорения системы.

В шлам могут быть также введены и другие соединения, общеизвестные в данной области техники, например диспергаторы, регуляторы рН и т.д.

Первая порошковая фракция затем может быть либо высушена, либо оставлена в шламе для дальнейшего смешивания со второй порошковой фракцией.

В одном варианте воплощения настоящего изобретения шлам, содержащий предварительно измельченную первую порошковую фракцию, сушат согласно известным способам, в частности сушкой распылением. Шлам, содержащий порошковые материалы, смешанные с органической жидкостью и, возможно, органическим связующим, распыляют через соответствующую насадку в сушильной башне, в которой небольшие капли мгновенно высыхают в потоке горячего газа, например, в потоке азота, формируя агломерированные гранулы.

Первая порошковая фракция включает такие элементы, как W, C и Co, и по меньшей мере один или более таких элементов, как Ta, Ti, Nb, Cr, Zr, Hf и Mo. Точный состав определяет используемый лом цементированного карбида. Могут также присутствовать небольшие количества, обычно менее 1 мас.%, других элементов, например, связующих металлов, таких как Fe и Ni, Zn, полученного в результате процесса извлечения Zn, и Al, полученного из покрытия цементированного карбида с покрытием. Присутствует также кислород, целесообразно, в количестве от 0,2 до 1,8 мас.%.

В одном варианте воплощения настоящего изобретения первая порошковая фракция включает по меньшей мере один такой элемент, как Ti, Та или Nb, в количестве, превышающем точку растворимости элементов.

В одном варианте воплощения настоящего изобретения первая порошковая фракция включает от 70 до 90 мас.% W, от 5 до 9 мас.% Co, от 1 до 3 мас.% Ta, от 0,5 до 3 мас.% Ti, от 0,1 до 2 мас.% Nb и от 5 до 6 мас.% углерода.

Вторая порошковая фракция включает порошки, которые получают без использования процессов извлечения Zn, т.е. первичные порошки. Вторая порошковая фракция включает порошок WC и, возможно, карбиды и/или карбонитриды одного или более таких элементов, как Cr, Zr, W, Ta, Ti, Hf и Nb.

Средний размер зерен WC во второй порошковой фракции целесообразно составляет от 2 до 12 мкм, предпочтительно - от 4 до 8 мкм.

В одном варианте воплощения настоящего изобретения вторая порошковая фракция включает Cr3C2.

В одном варианте воплощения настоящего изобретения вторая порошковая фракция включает порошки кубического карбида либо в виде отдельных карбидов, либо предварительно легированных WC.

В одном варианте воплощения настоящего изобретения порошки кубического карбида вводят в виде отдельных карбидов. Вводят один или более таких карбидов, как NbC, TiC и TaC.

В одном варианте воплощения настоящего изобретения порошки кубического карбида вводят после предварительного легирования WC, т.е. в виде (Me,W)C, где Ме представляет собой один или более из таких элементов, как Ta, Ti, Nb, Cr, Hf и Zr, предпочтительно один или более из таких элементов, как Ta, Ti и Nb.

В следующем варианте воплощения настоящего изобретения вводят комбинацию отдельных кубических карбидов и кубических карбидов, предварительно легированных WC.

В следующем варианте воплощения настоящего изобретения по меньшей мере часть второй порошковой фракции добавляют к первой порошковой фракции до стадии предварительного измельчения таким образом, что по меньшей мере часть второй порошковой фракции также измельчается на стадии предварительного измельчения.

В следующем варианте воплощения настоящего изобретения по меньшей мере часть второй порошковой фракции подвергают отдельной стадии предварительного измельчения до смешивания с предварительно измельченной первой порошковой фракцией.

В следующем варианте воплощения настоящего изобретения вторую порошковую фракцию не подвергают предварительному измельчению до смешивания с предварительно измельченной первой порошковой фракцией.

Точный состав второй порошковой фракции определяется составом первой порошковой фракции. Состав второй порошковой фракции регулируют таким образом, чтобы конечный состав первой и второй порошковой фракций соответствовал назначению.

Порошки связующего металла могут представлять собой либо порошок одного связующего металла, либо смесь порошков двух или более металлов, либо порошок сплава двух или более металлов. Связующие металлы выбирают из Cr, Mo, Fe, Co или Ni, предпочтительно Co, Cr или Ni, наиболее предпочтительно Со. Размер зерен вводимых порошков связующих металлов целесообразно составляет от 0,5 до 3 мкм, предпочтительно от 5 до 1,5 мкм. Средний размер зерен часто задается распределителем сырья. Количество порошка связующего металла, который вводят отдельно, зависит от количества связующего металла, присутствующего в первой порошковой фракции. Поэтому количество вводимого порошка связующего металла представляет собой количество, которое необходимо для того, чтобы обеспечить нужное содержание металлического связующего в конечном продукте. Общее содержание связующего металла в конечном продукте целесообразно составляет от 2 до 20 мас.%.

Весовое соотношение между первой и второй весовой фракцией целесообразно составляет от 0,25 до 9, предпочтительно от 5 до 4, наиболее предпочтительно от 0,8 до 1,2.

Соотношение между средним размером зерен WC во второй порошковой фракции и средним размером зерен первой порошковой фракции целесообразно составляет от 5 до 40, предпочтительно от 5 до 25.

Порошок металлического связующего, первой и второй порошковой фракции и, возможно, органического связующего соответствующим образом смешивают в результате операции измельчения в шаровой мельнице или аттриторе. Измельчение целесообразно осуществляют, вначале формируя шлам, содержащий порошок металлического связующего, первую и вторую порошковую фракцию и, возможно, органическое связующее. Затем шлам соответствующим образом измельчают в шаровой мельнице или аттриторе, получая гомогенную смесь шлама.

В одном варианте воплощения настоящего изобретения первую порошковую фракцию сушат до смешивания со второй порошковой фракцией, при этом первая порошковая фракция предпочтительно имеет вид высушенных агломератов, полученных распылительной сушкой. Затем вторую порошковую фракцию смешивают с первой порошковой фракцией, имеющей либо вид сухих порошков, либо шлама. Также добавляют порошок металлического связующего, возможно, органическое связующее и жидкость для измельчения для того, чтобы сформировать шлам со всеми составляющими. Может быть использована любая жидкость, обычно используемая в качестве жидкости для измельчения в известном способе получения цементированного карбида, т.е. для этого также подходят жидкости, используемые для описанного выше измельчения первой порошковой фракции.

Органическое связующее также необязательно вводят в шлам с целью облегчения гранулирования во время последующей операции распылительной сушки, а также в качестве агента для прессования для любых последующих операций прессования и спекания. Органическое связующее может представлять собой любое связующее, обычно используемое в данной области техники. Органическое связующее может, например, представлять собой парафин, полиэтиленгликоль (ПЭГ), длинноцепочечные жирные кислоты и т.д. Количество органического связующего целесообразно составляет от 15 до 25 об.% от общего сухого объема порошка, при этом количество органического связующего не входит в общий объем сухого порошка.

Затем шлам сушат, используя некоторые из общеизвестных способов, описанных в связи с предварительно измельченным порошком.

Затем из высушенных порошков/гранул в результате операций прессования, таких как одноосное прессование, многоосное прессование и т.д., формируют сырец.

Сырец, сформированный из порошков/гранул, полученных согласно настоящему изобретению, затем спекают согласно любым известным методам спекания, например вакуумное спекание, спекание с HIP (горячее изостатическое прессование), спекание с использованием искровой плазмы и т.д.

В одном варианте воплощения настоящего изобретения цементированный карбид спекают таким образом, чтобы сформировать градиент, создавая в результате поверхностную зону, которая обогащена кобальтом и свободна от гамма-фазы. Это обычно достигается благодаря введению карбонитридов в качестве сырья.

В одном варианте воплощения настоящего изобретения цементированный карбид спекают таким образом, чтобы не вызвать формирования градиента, т.е. без использования азота, либо спекают с противодавлением N2.

Конечный состав цементированного карбида определяется его конкретным назначением. Типичный состав цементированного карбида, используемого в режущем инструменте, может включать WC и от 4,5 до 12 мас.% Co, от 1 до 5 мас.% Ta, от 1 до 5 мас.% Ti и от 0,2 до 5 мас.% Nb.

Цементированный карбид может быть использован для любого типа режущих инструментов, изнашиваемых деталей или других видов общего применения цементированных карбидов.

Под режущим инструментом здесь подразумеваются вставка, концевая фреза или сверло.

В одном варианте воплощения настоящего изобретения инструменты из цементированного карбида, полученного согласно вышеприведенному описанию, покрывают износостойким покрытием, используя метод CVD (химическое осаждение из паровой фазы) или PVD (физическое осаждение из паровой фазы).

В одном варианте воплощения настоящего изобретения методом CVD наносят покрытие, включающее первый слой из TiCN, нанесенный методом MTCVD, и второй слой из α-Al2O3, нанесенный методом CVD. Может быть также нанесен самый верхний цветной слой для определения износа, например, слой TiN.

Покрытие может быть также подвергнуто дополнительной обработке, такой как очистка металлической щеткой, обдувка и т.д.

В настоящем изобретении также заявлен режущий инструмент из цементированного карбида, изготовленный согласно описанному выше способу.

ПРИМЕР 1 (СОГЛАСНО НАСТОЯЩЕМУ ИЗОБРЕТЕНИЮ)

Порошок, полученный из гамма-фазы, содержащей лом цементированного карбида, полученного в результате извлечения Zn, с составом в мас.%, указанных в таблице 1, предварительно измельчают в шаровой мельнице в течение 100 часов. Размер зерен после предварительного измельчения составляет 0,7 мкм, как показывает измерение с использованием лазерно-дифракционного оборудования под названием Microtrac 3000S, осуществляемое в абсорбционном режиме и в воде, т.е. порошок имеет вид шлама.

Таблица 1
Co Ta Ti Nb Cr Fe Ni C O N
Первая фракция 8,80 2,25 1,66 0,64 0,08 0,05 0,02 5,75 0,24 0,06

Предварительно измельченную фракцию смешивают с фракцией первичного WC сырья с размером зерен 5 мкм (FSSS) и в виде отдельных карбидов к смеси добавляют первичные порошки кубического карбида (Ti0,85W0,15)C, (Ta0,8Nb0,2)C и Ti(C0,5N0,5) вместе с порошком связующего металла (Со) в количествах, указанных в таблице 2, таким образом чтобы соответствовать конечному общему составу элементов в мас.%, указанному в таблице 3.

Таблица 2
Первая порошковая фракция WC (вторая порошковая фракция) Отношение первой/второй порошковой фракции Со (Ti0,85W0,15)C (Ta0,8Nb0,2)C Ti(C0,5N0,5)
48,3 44,5 1,1 3,3 1,4 1,9 0,6

Таблица 3
W Co Ta Ti Nb C O N
80,8 7,5 2,7 1,8 0,4 6,24 0,5 0,09

Также добавляют органическое связующее, такое как полиэтиленгликоль, в количестве 2 мас.%, при этом количество органического связующего не входит в общий объем сухого порошка. Весь объем материала смешивают в результате операции измельчения в течение 12 часов, используя шаровую мельницу для формирования гомогенной смеси шлама. Затем шлам сушат в распылительной сушилке до готового для прессования порошка. Заготовки из цементированного карбида прессуют в соответствии с CNMG120408 в виде вставок с геометрией согласно ISO из полученного, готового для прессования порошка и спекают в атмосфере аргона под давлением 40 мбар при температуре 1450°С. Измеряют коэрцивность и удельное магнитное насыщение, используя Foerster Koercimat CS1.096. Величина коэрцивности спеченных вставок составляет 13,3 kA/m согласно DIN ISO 3326, а величина удельного магнитного насыщения составляет 12,51 мкмТ⋅мкм3⋅кг-1. Спеченные вставки получают 25-мкм свободную от гамма-фазы, обогащенную кобальтом поверхностную зону.

Вставки подвергают торцевому шлифованию и закруглению краев до радиуса режущей кромки 50 мкм и наносят на них покрытие методом CVD, состоящее из 11-мкм слоя TiCN, нанесенного методом MTCVD, а затем 5-мкм слоя Al2O3 и 1-1,5-мкм слоя TiN. Слой TiN удаляют с передней поверхности посредством влажной пескоструйной обработки.

ПРИМЕР 2 (ИЗВЕСТНЫЙ СПОСОБ)

Первичное WC сырье с размером зерен 5 мкм, предварительно легированное сырье из кубического карбида (Та, Ti, Nb, W)(C,N), весовая фракция Та/Ti/Nb/W которого составляет 31/20/5/34, и порошок Со смешивают таким образом, чтобы соответствовать конечному общему составу элементов в мас.%, указанному в таблице 4.

Таблица 4
W Co Ta Ti Nb C O N
81,4 7,5 2,7 1,8 0,4 6,04 0,04 0,09

Заготовки из цементированного карбида прессуют в соответствии с CNMG120408 в виде вставок с геометрией согласно ISO из полученного, готового для прессования порошка и спекают в таких же условиях, как и в примере 1. Измеряют коэрцивность и удельное магнитное насыщение, используя Foerster Koercimat CS1.096. Величина коэрцивности спеченных вставок составляет 13,2 kA/m согласно DIN ISO 3326, а величина удельного магнитного насыщения составляет 13,01 мкмТ⋅мкм3⋅кг-1. Спеченные вставки получают 25-мкм свободную от гамма-фазы, обогащенную кобальтом поверхностную зону.

Вставки подвергают торцевому шлифованию и закруглению краев таким же образом, как и в примере 1.

ПРИМЕР 3 (СРАВНИТЕЛЬНЫЙ)

Первичное WC сырье с размером зерен 5 мкм, порошок связующего металла (Со) и материал из PRZ, которые были рециркулированы согласно способу обработки цинка, с составом, показанным в таблице 1, и первичные порошки кубического карбида (Ti0,85W0,15)C, (Ta0,8Nb0,2)C и Ti(C0,5N0,5) вводят в виде отдельных карбидов в количествах в мас.%, указанных в таблице 5. Рециркулированный порошок PRZ не подвергают стадии предварительного измельчения. Размер зерен материала из PRZ составляет 3 мкм, как показывают результаты измерения с использованием лазерно-дифракционного оборудования под названием Microtrac 3000S, осуществляемого в абсорбционном режиме и в воде, т.е. порошок имеет вид шлама. Порошки смешивают таким образом, чтобы соответствовать конечному общему составу элементов в мас.%, указанному в таблице 6. Также добавляют органическое связующее, такое как полиэтиленгликоль, в количестве 2 мас.%, при этом количество органического связующего не входит в общий объем сухого порошка. Весь объем материала смешивают в результате операции измельчения в течение 12 часов, используя шаровую мельницу для формирования гомогенной смеси шлама. Затем шлам сушат в распылительной сушилке до готового для прессования порошка.

Таблица 5
PRZ WC Связующий металл (Со) (Ti0,85W0,15)C (Ta0,8Nb0,2)C Ti(C0,5N0,5)
48,3 44,5 3,3 1,4 1,9 0,6

Таблица 6
W Co Ta Ti Nb C O N
81,4 7,5 2,7 1,8 0,4 6,04 0,1 0,09

Заготовки из цементированного карбида прессуют в соответствии с CNMG120408 в виде вставок с геометрией согласно ISO из полученного готового для прессования порошка и спекают в таких же условиях, как и в примере 1. Измеряют коэрцивность и удельное магнитное насыщение, используя Foerster Koercimat CS1.096. Величина коэрцивности спеченных вставок составляет 13,28 kA/m согласно DIN ISO 3326, а величина удельного магнитного насыщения составляет 12,87 мкмТ⋅мкм3⋅кг-1. Спеченные вставки получают 25-мкм свободную от гамма-фазы, обогащенную кобальтом поверхностную зону.

Вставки подвергают торцевому шлифованию и закруглению краев таким же образом, как и в примере 1.

ПРИМЕР 4

Средний размер зерен WC и кубических карбидов (гамма-фаза) измеряют, используя метод средних линейных секущих трех изображений SEM (4000-кратное увеличение) для каждого образца микроструктуры после спекания. На каждом изображении проводят по нескольку линий и измеряют зерна кубического карбида вдоль всех линий. Полученные результаты показаны в таблице 7. Интервал показывает, что он охватывает 90% зерен кубического карбида.

Таблица 7
Средний размер зерен WC Средний размер зерен кубического карбида Интервал размера зерен кубического карбида
Пример 1 (согласно настоящему изобретению) 1,3 мкм 0,9 мкм 0,8-1,2 мкм
Пример 2 (согласно известному способу) 1,3 мкм 1 мкм 0,8-1,2 мкм
Пример 3 (согласно известному способу) 1,3 мкм 2,3 мкм 1,5-3 мкм

ПРИМЕР 5

Полученные вставки с геометрией в соответствии с CNMG120408 ISO согласно примеру 1 и примеру 3 подвергают испытаниям в виде продольной прерывистой токарной обработки на основе критерия требований к вязкости материала SSI 672, нелегированной стали (DIN Ck 45).

Данные для расчета режимов резания:

Скорость резания 220 м/мин.

Скорость подачи 0,30 мм.

Глубина резания 3 мм.

Хладагент: используется.

Полученные результаты показаны в таблице 8. Технические характеристики определяют по длине износа краевой линии в среднем после двух циклов обработки материала детали в четырех последовательных испытаниях. Критериями стойкости инструмента служат повреждение и скалывание краевой линии.

Таблица 8
Износ краевой линии
Пример 1 (согласно настоящему изобретению) 20%
Пример 3 (сравнительный) 77%

Как видно из таблицы 8, вставки, изготовленные согласно настоящему изобретению, имеют такие же технические характеристики, как и сравнительные примеры.

ПРИМЕР 6

Полученные вставки с геометрией в соответствии с CNMG120408 ISO согласно примеру 1, примеру 2 и примеру 3 подвергают испытаниям в виде продольной прерывистой токарной обработки с увеличивающейся скоростью подачи на основе критерия требований к вязкости материала SS1312, низкоуглеродистой нелегированной стали (DIN St 37-2).

Данные для расчета режимов резания:

Скорость резания 80 м/мин.

Скорость подачи от 0,15 мм до 0,35 мм.

Глубина резания 1,5 мм.

Хладагент: используется.

Полученные результаты показаны в таблице 9. Технические характеристики определяют по времени до повреждения края. Критериями стойкости инструмента служат повреждение и скалывание краевой линии.

Таблица 9
Стойкость инструмента (мин)
Пример 1 (согласно настоящему изобретению) 1,25
Пример 2 (сравнительный) 1,22
Пример 3 (сравнительный) 1,05

Как видно из таблицы 9, вставки, изготовленные согласно настоящему изобретению, имеют такие же или лучшие технические характеристики, чем сравнительные примеры.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 200.
15.10.2018
№218.016.9232

Бейнитная сталь для компонентов для бурения породы

Изобретение относится к области металлургии, а именно к бейнитной стали, используемой для изготовления соединителей с внешней и внутренней резьбами для буровых колонн. Сталь содержит, в вес.%: C: 0,16-0,23, Si: 0,8-1,0, Mo: 0,67-0,9, Cr: 1,10-1,30, V: более 0,3 до 0,4, Ni: 1,60-2,0, Mn:...
Тип: Изобретение
Номер охранного документа: 0002669665
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.937e

Способ и устройство для изготовления режущей пластины

Группа изобретений относится к изготовлению режущей пластины, имеющей сквозное отверстие, которое продолжается в направлении, которое не параллельно главному направлению прессования. Способ включает перемещение первого и второго пуансонов в полости матрицы в направлении друг к другу вдоль...
Тип: Изобретение
Номер охранного документа: 0002669954
Дата охранного документа: 17.10.2018
27.10.2018
№218.016.9756

Способ и устройство для изготовления заготовки режущей пластины

Группа изобретений относится к изготовлению заготовки режущей пластины путем сжатия порошка. Обеспечивают пресс-форму, содержащую верхнюю часть и нижнюю часть матрицы, соединенные с образованием рабочей полости, верхний и нижний пуансон. Верхняя часть матрицы образует канал скольжения в нем...
Тип: Изобретение
Номер охранного документа: 0002670825
Дата охранного документа: 25.10.2018
01.11.2018
№218.016.98f1

Устройство для управления процессом вращательной механической обработки с удалением стружки заготовки и режущий инструмент для вращательной механической обработки с удалением стружки

Группа изобретений относится к устройствам для управления процессом вращательной механической обработки с удалением стружки заготовки и содержит систему мониторинга, которая включает по меньшей мере один датчик на поверхностных акустических волнах (ПАВ) для установки на режущий инструмент....
Тип: Изобретение
Номер охранного документа: 0002671035
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.9913

Ударное буровое долото с множеством наборов торцевых режущих вставок

Группа изобретений относится к ударному буровому долоту для горной породы и ударному буровому устройству, содержащему указанное долото. Технический результат заключается в увеличении скорости проходки и срока службы долота. Ударное буровое долото содержит головку, обеспеченную на одном конце...
Тип: Изобретение
Номер охранного документа: 0002671386
Дата охранного документа: 30.10.2018
01.11.2018
№218.016.992e

Компоновка быстроразъемного бурового долота с погружным ударником

Группа изобретений относится к бурильной компоновке с погружным ударником и к буровому устройству для ударно-вращательного бурения горной породы. Технический результат заключается в удобной и быстрой замене бурового долота. Бурильная компоновка с погружным ударником содержит буровое долото,...
Тип: Изобретение
Номер охранного документа: 0002671366
Дата охранного документа: 30.10.2018
23.11.2018
№218.016.9fac

Инструмент для механической обработки с удалением стружки, а также вставной резец для закрепления пластины и сменная режущая пластина для него

Инструмент включает вставной резец (3) и сменную режущую пластину (4), установленную в гнезде, которое ограничено между нижней опорой и упруго деформируемым зажимным пальцем (8). Режущая пластина включает верхнюю сторону, в которую включена расположенная спереди передняя поверхность (22), а...
Тип: Изобретение
Номер охранного документа: 0002672976
Дата охранного документа: 21.11.2018
24.11.2018
№218.016.a0af

Складывающийся бункер

Группа изобретений относится к бункеру и мобильному устройству с таким бункером, которые могут быть использованы для обработки насыпных материалов. Складывающийся бункер содержит боковую стенку, шарнирно установленную на опорной раме с помощью первого шарнирного крепления, первый механизм с...
Тип: Изобретение
Номер охранного документа: 0002673161
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0d8

Инструмент для механической обработки с удалением стружки и удерживающий пластину вставной резец, а также ключ для него

Изобретение относится к отрезному инструменту в виде вставного резца (3) и сменной режущей пластины (4), а также ключу (20), имеющему эксцентриковое тело (21). Режущая пластина (4) может зажиматься в гнезде (8) под действием упругого эластичного зажимающего пальца (10). В резце образовано...
Тип: Изобретение
Номер охранного документа: 0002673269
Дата охранного документа: 23.11.2018
02.12.2018
№218.016.a2ce

Режущий узел с режущим устройством и способ сборки

Группа изобретений относится к врубовым машинам для разрушения поверхности горной породы. Технический результат - облегчение установки и обслуживания режущего устройства. Режущий узел для врубовой машины содержит вал, который установлен на машине и один конец которого проходит от машины, и...
Тип: Изобретение
Номер охранного документа: 0002673683
Дата охранного документа: 29.11.2018
Показаны записи 71-75 из 75.
17.02.2018
№218.016.2a7f

Режущий инструмент с износостойким покрытием со структурированной областью поверхности

Изобретение относится к режущему инструменту с износостойким покрытием, которое может быть использовано для точения, фрезерования, сверления или других методов механической обработки с образованием стружки. Режущий инструмент с износостойким покрытием содержит подложку и износостойкое покрытие,...
Тип: Изобретение
Номер охранного документа: 0002643096
Дата охранного документа: 30.01.2018
04.04.2018
№218.016.325f

Втулка главного вала конусной дробилки

Группа изобретений относится к устройствам для дробления и измельчения материалов и может быть использована в конусных дробилках. Главный вал конусной дробилки содержит удлиненный главный вал, имеющий обращенную наружу поверхность, продолжающуюся поперечно для сужения внутрь к продольной оси...
Тип: Изобретение
Номер охранного документа: 0002645328
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.35ac

Загребающая головка горнопроходческой машины

Группа изобретений относится к горнопроходческим машинам с загребающей головкой. Технический результат - устранение потребности в дополнительных загребающих лапах, облегчение перемещения извлекаемого материала. Загребающая головка устанавливается на переднем конце горнопроходческой машины....
Тип: Изобретение
Номер охранного документа: 0002646259
Дата охранного документа: 02.03.2018
14.07.2019
№219.017.b438

Новый способ получения цементированного карбида и получаемый при его помощи продукт

Группа изобретений относится к получению цементированного карбида. Способ включает этапы: а) формирования суспензии, содержащей жидкость для помола, связующий металл и компоненты высокой твердости, где указанные компоненты высокой твердости включают карбид вольфрама с гексагональной структурой...
Тип: Изобретение
Номер охранного документа: 0002694401
Дата охранного документа: 12.07.2019
25.04.2020
№220.018.196b

Шарошечная буровая коронка

Изобретение относится к порошковой металлургии, в частности к твердосплавным инструментам для бурения. Шарошечная буровая коронка изготовлена из спеченного твердого сплава, 4-12 мас.% Co, Cr в количестве, обеспечивающем отношение Cr/Co 0,043-0,19, и остаток из WC и неизбежных примесей. Среднее...
Тип: Изобретение
Номер охранного документа: 0002719867
Дата охранного документа: 23.04.2020
+ добавить свой РИД