×
25.08.2017
217.015.c23e

Результат интеллектуальной деятельности: СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом используют газообразную среду, инертную по отношению к исследуемому материалу. Техническим результатом является повышение точности и чувствительности регистрации фазового перехода, простоты и компактности оборудования, а также возможность определять фазовые переходы при воздействии высоких давлений и температур и достичь малой инерционности системы измерений. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности к способу определения протекания фазовых переходов в металлах и сплавах. В общем случае, способ может быть применен для исследования наличия и характеристик фазовых переходов в любых материалах.

Исторически первыми приборами были рычажные (механические) дилатометры, в которых малое изменение размера образца через систему рычагов вызывало многократно увеличенное смещение стрелки относительно шкалы (Дилатометр // Энциклопедический словарь Брокгауза и Ефрона. В 86 томах. СПб. 1890-1907). В настоящее время широко используются дилатометры, основанные на оптико-механическом, емкостном, индукционном, интерференционном, рентгеновском или радиорезонансном способах определения изменения объема тел при исследованиях протекания фазовых переходов (Дилатометрия // Большая Российская энциклопедия. В 30 томах. Том 8. - М.: Большая Российская энциклопедия, 2007. С. 748-749). Данные виды дилатометров не позволяют работать с образцами материалов под высоким давлением.

Существуют и другие способы определения протекания фазовых переходов. За прототип, как наиболее близкий по технической сущности, взят способ регистрации фазовых переходов в материалах при воздействии на материал давления и температуры, где регистрация фазового перехода осуществляется по изменению температуры образца из исследуемого материала ввиду изменения свойств образца при постоянном или меняющемся тепловом потоке, протекающем через пуансоны и образец. (А.С. СССР №1371198 A1, G01N 25/02, опубл. 15.04.1994. Щенников В.В. Способ регистрации фазового перехода).

Однако данный способ обладает следующими недостатками. В случае низких прочностных свойств исследуемого материала при высоких давлениях необходимо использовать дополнительную оснастку, которая позволяет сохранить форму образца из исследуемого материала (предотвращает сильные деформации, а также выдавливание материала в зазоры между оснасткой и пуансонами). Выбранный в прототипе способ создания необходимого давления сопряжен с использованием громоздкого оборудования. Изменение температуры в данном способе является следствием изменения теплопроводности материала при протекании фазового перехода, что с учетом тепловой инертности системы и погрешности измерения температуры может давать низкую чувствительность данного способа.

Задачей настоящего изобретения является повышение точности и чувствительности регистрации фазового перехода в материале при одновременном упрощении способа.

При использовании изобретения достигается следующий технический результат:

- повышается точность и чувствительность регистрации фазового перехода;

- появляется возможность использовать относительно простое, компактное и дешевое оборудование;

- достигается возможность определять характеристики фазовых переходов при равномерном всестороннем сжатии при больших давлениях и при высоких температурах, что повышает точность регистрации;

- достигается малая инерционность системы измерений.

Для решения указанной задачи и достижения технического результата предложен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором, согласно изобретению, давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом необходимо использовать газообразную среду, инертную по отношению к исследуемому материалу.

Суть изобретения заключается в следующем. Образец из исследуемого материала помещается внутрь высокопрочной исследовательской ячейки, в которую после герметизации подается газ под давлением. Далее ячейка равномерно нагревается со скоростями, которые обеспечивают малые градиенты температуры по объему исследуемого образца, при этом давление газа внутри ячейки возрастает согласно уравнению состояния для используемого газа. Давление газа увеличивается преимущественно из-за увеличения температуры газа и лишь немного из-за изменения объема внутренней полости вследствие температурного расширения материала образца и материала ячейки. При достижении температуры и давления фазового перехода материал образца меняет объем, следствием чего является дополнительное изменение давления газа внутри ячейки. В случае увеличения объема образца свободный объем ячейки уменьшается и давление возрастает, а в случае уменьшения объема образца свободный объем ячейки увеличивается и давление уменьшается. Такое изменение давления также описывается уравнением состояния данного газа, но зависит от изменения объема, занимаемого газом. Поскольку во время фазового перехода нагрев осуществляется медленно, то вклад увеличения температуры в изменение давления незначителен (меньше чем изменение давления от изменения объема) и поддается оценке с помощью уравнения состояния. После протекания фазового перехода объем образца стабилизируется, и при дальнейшем медленном равномерном нагревании ячейки с образцом будет снова происходить изменение давления газа преимущественно за счет изменения температуры. В результате регистрируются кривые изменения давления и температуры от времени, из которых, зная уравнение состояния используемого газа, можно выделить изменение давления, связанное с изменением температуры газа, изменением давления, обусловленного изменением объема занятого газом вследствие теплового расширения материала образца и материала ячейки, и изменение давления, обусловленное значительным изменением объема образца во время фазового перехода. Это позволяет в дальнейшем, после обработки данных, указать температуру и давление начала фазового перехода, скорость протекания фазового перехода, изменение объема материала при протекании фазового перехода.

Для определения фазового перехода по полученным данным строим график зависимости изменения давления от температуры Р(Т). В обычных условиях рост давления газа пропорционален росту температуры, т.е. кривая Р(Т) имеет практически линейную зависимость (наклон незначительно меняется при изменении давления ввиду изменения сжимаемости газа). Любые значительные отклонения от этой зависимости свидетельствуют об изменениях в материале образца. Продифференцировав кривую Р(Т) по температуре, т.е. перестроив ее в координатах dP/dT, более точно можно определить температуру начала и окончания фазового перехода, а также кинетику фазового перехода. Пример кривых Р(Т) и dP/dT для поиска фазового перехода приведен на фиг. 4. На продифференцированной кривой четко выражен пик, соответствующий фазовому переходу.

Газ, используемый в исследованиях, желательно выбирать из условий

- химической инертности по отношению к исследуемому материалу и конструкционным материалам, примененным в конструкции ячейки;

- малой растворимости и низкого коэффициента диффузии в материалах;

- требуемой величины сжимаемости газа в используемой области давлений и температур;

- наличия достаточно точного уравнения состояния газа в используемой области давлений и температур либо точных экспериментальных данных по сжимаемости газа.

В заявляемом способе создаваемое давление газа воздействует на материал образца со всех сторон, поэтому прочностные характеристики исследуемого материала не важны. Современное оборудование для создания давления газа до нескольких тысяч атмосфер является достаточно компактным (использование термокомпрессоров, газогенераторов). Регистрация фазовых переходов в данном изобретении основана на регистрации изменения давления газовой среды, где основная погрешность измерений определяется используемым датчиком давления (при условии герметичности ячейки, малых деформациях внутренней полости ячейки при воздействии высокого давления) и погрешностью используемого уравнения состояния (менее 0,5% для газов, широко используемых в науке и технике). Инерция такой системы регистрации крайне мала.

Ha фигуре 1 приведена одна из возможных конструктивных схем исследовательской ячейки.

На фигуре 2 приведена одна из возможных газовых схем установки для проведения регистрации фазовых переходов в материале.

На фигуре 3 показан типичный график изменения давления и температуры от времени с указанием, какие процессы определяют изменение давления. График получен при математическом моделировании процессов.

На фигуре 4 приведены экспериментальный график зависимости давления от температуры и кривая, полученная при дифференцировании.

На указанных чертежах использованы следующие обозначения.

На фиг. 1: 1 - штуцер для подачи газа; 2 - нагреватель; 3 - теплоизоляция; 4 - крышка; 5 - место для образца из исследуемого материала; 6 - место установки термопары; 7 - уплотнение; 8 - основание; 9 - резьбовое соединение.

На фиг. 2: 10 - источник газа с нагревателем; 11 - исследовательская ячейка, в которую помещается образец; 12 - вентиль источника газа; 13 - вентиль исследовательской ячейки; 14 - вентиль коммуникации отвода газа (на вакуумный пост и в атмосферу); 15 - коммуникация отвода газа в атмосферу; 16 - датчик для контроля давления газа в источнике газа; 17 - датчик для контроля давления газа в исследовательской ячейке.

На фиг. 3: 18 - фрагменты графика давления, где рост давления преимущественно вызван ростом температуры; 19 - фрагмент графика давления, где рост давления преимущественно вызван изменением объема образца вследствие фазового перехода; 20 - график изменения температуры от времени; 21 - график изменения давления от времени.

Использование способа заключается в следующем.

Внутрь основания 8 в место установки термопары 6 (фиг. 1) устанавливается термопара или платиновый датчик температуры с термопастой для улучшения теплопроводности. Основание 8 крепится к рабочей поверхности. На основание 8 устанавливается уплотнение 7. Устанавливается исследуемый образец на основание 8 так, чтобы после сборки он оказался в полости между крышкой 4 и основанием 8 (место для образца 5). После чего крышку 4 закручивают (резьбовое соединение 9) относительно основания 8 до резкого возрастания усилия. На крышку 4 устанавливаются нагреватель 2 и теплоизоляция 3. Собранная исследовательская ячейка 11 (фиг. 2) стыкуется к вентилю 13 установки подачи газа посредством штуцера 1 (фиг. 1).

Эксперимент начинается с вакуумирования (при необходимости удалить воздух или иную газовую среду, в которой производилась сборка ячейки) и проверки герметичности собранной ячейки (необходимо для дальнейшей корректности получаемых результатов). Для проверки герметичности могут использоваться различные способы, в частности подача давления газа и выдержка в течение относительно длительного времени. При этом падение давления газа по датчику 17 указывает на наличие течи. После проверки герметичности в ячейке 11 (фиг. 2) создаются условия, соответствующие началу эксперимента, т.е. подается газ под необходимым давлением с источника 10 через вентили 12 и 13 в исследовательскую ячейку 11, вентиль 13 закрывается, и ячейка 11 с образцом нагревается нагревателем 2 (фиг. 1) до нужной температуры (до температуры области, где предполагается наличие фазового перехода). Давление газа в исследовательской ячейке 11 контролируется по датчику давления 17. Далее обеспечивается медленный равномерный нагрев ячейки 11 с образцом в предполагаемой области фазового перехода. При этом регистрируются давление газа и температура (см. фиг. 3). Изменению давления газа от температуры соответствуют более пологие участки 18 графика давления, а в области фазового перехода участок графика 19 более крутой. Сопоставление графиков изменения от времени температуры 20 и давления 21 позволяет определить температуру и давление, при которых происходит фазовый переход, а также длительность по времени. После завершения эксперимента ячейка 11 охлаждается, газ стравливается через вентили 13 и 14 в атмосферу по коммуникации 15, образец извлекается. Полученные экспериментальные данные (фиг. 4) подтверждают результаты математического моделирования (фиг. 3), где смоделировано изменение давления в зависимости от температуры и изменения свободного объема ячейки при фазовом переходе материала образца для заявляемого способа регистрации фазовых переходов.

Данный способ позволяет изучать фазовые переходы в различных веществах и материалах (в галлии, церии, олове, стронции, лантане и др., а также в различных сплавах) при давлениях до нескольких тысяч атмосфер и температурах до 500-600 градусов Цельсия (при использовании в конструкции ячейки специальных сталей). Температурный диапазон может быть расширен при использовании жаропрочных конструкционных материалов, что позволяет данным способом изучать фазовые переходы при высоких температурах (в титане, цирконии и др.).

Преимущества данного способа определения фазовых диаграмм заключаются в относительной простоте и компактности исполнения оборудования, его дешевизне по сравнению с оборудованием для ряда дилатометрических методов. Наиболее важное преимущество заявляемого способа заключается в повышении точности и чувствительности регистрации фазового перехода, возможности определять фазовые переходы при воздействии больших давлений и температур на материал, равномерности воздействия давления на образец из изучаемого материала, малой инерционности системы измерения.


СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 499.
25.08.2017
№217.015.aa61

Устройство комплексного контроля волоконно-оптических линий

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования . Технический результат состоит в повышении качества контроля и обеспечении работы устройства в широком динамическом...
Тип: Изобретение
Номер охранного документа: 0002611588
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab0a

Установка для исследования твердости образца из токсичного материала

Изобретение относится к механическим испытаниям, а конкретно к исследованиям твердости образцов из токсичных материалов. Установка содержит вакуумируемую рабочую камеру с захватами, один из которых активный, а второй пассивный захват-тензодинамометр, механизм нагружения, регистрирующую...
Тип: Изобретение
Номер охранного документа: 0002612197
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ab12

Преобразователь сопротивления и термо-эдс в напряжение

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования изменения сопротивления резистивного первичного преобразователя температуры или деформации в напряжение и преобразования термо-ЭДС. Преобразователь сопротивления и термо-ЭДС в напряжение...
Тип: Изобретение
Номер охранного документа: 0002612200
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ac7a

Устройство для определения свойств материала тонкостенных полусферических сегментов

Изобретение относится к исследованию механических свойств материалов, а именно к определению технологических параметров процессов (усилий, напряжений, деформаций и перемещений), в том числе и неразрушающим способом. Устройство содержит силовую раму, в состав которой входит нижнее основание, на...
Тип: Изобретение
Номер охранного документа: 0002611979
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.add0

Взрывозащитная камера для проведения взрывных работ и способ локализации токсичных веществ и продуктов взрыва в случае несанкционированной потери ее герметичности

Взрывозащитная камера (ВЗК) для проведения взрывных работ и способ локализации токсичных веществ и продуктов взрыва в случае несанкционированной потери герметичности ВЗК относится к области взрывных работ и исследования взрывных быстропротекающих процессов и может быть применена при разработке...
Тип: Изобретение
Номер охранного документа: 0002612699
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.af26

Способ сборки оптико-механического блока космического аппарата

Способ сборки оптико-механического блока космического аппарата относится к области космического оптического приборостроения и может быть использован при сборке, юстировке и калибровке крупногабаритных оптико-механических блоков, предназначенных для работы в космосе. Способ включает следующие...
Тип: Изобретение
Номер охранного документа: 0002610919
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.afe7

Контейнер для хранения и транспортирования отработавших тепловыделяющих сборок и чехол для их размещения

Изобретение относится к контейнерам и чехлам, предназначенным для транспортирования и хранения отработавшего ядерного топлива. Контейнер содержит металлический корпус, концентрично закрепленные на комингсе цилиндрические обечайки. Между вкладышами и наружной обечайкой размещены цилиндрические...
Тип: Изобретение
Номер охранного документа: 0002611057
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b348

Способ метания из ствольной пороховой баллистической установки

Изобретение относится к газодинамическим устройствам и касается наземных отработок новых образцов боеприпасов с использованием ствольных пороховых баллистических установок (ПБУ). Пороховой заряд размещают в зарядной камере. Вводят в установку метаемый объект и инициируют заряд. При этом...
Тип: Изобретение
Номер охранного документа: 0002613639
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b72d

Способ воспламенения порохового заряда в баллистической установке и установка для его осуществления

Группа изобретений относится к испытательной технике. Способ воспламенения порохового заряда включает размещение модулей порохового заряда, его воспламенение. Пороховой заряд выполняют состоящим из двух разнесенных модулей. Первый модуль устанавливают вплотную к отверстию, предназначенному для...
Тип: Изобретение
Номер охранного документа: 0002614440
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b825

Сверхширокополосный генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В...
Тип: Изобретение
Номер охранного документа: 0002614986
Дата охранного документа: 03.04.2017
Показаны записи 41-50 из 133.
25.08.2017
№217.015.aa61

Устройство комплексного контроля волоконно-оптических линий

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования . Технический результат состоит в повышении качества контроля и обеспечении работы устройства в широком динамическом...
Тип: Изобретение
Номер охранного документа: 0002611588
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab0a

Установка для исследования твердости образца из токсичного материала

Изобретение относится к механическим испытаниям, а конкретно к исследованиям твердости образцов из токсичных материалов. Установка содержит вакуумируемую рабочую камеру с захватами, один из которых активный, а второй пассивный захват-тензодинамометр, механизм нагружения, регистрирующую...
Тип: Изобретение
Номер охранного документа: 0002612197
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ab12

Преобразователь сопротивления и термо-эдс в напряжение

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования изменения сопротивления резистивного первичного преобразователя температуры или деформации в напряжение и преобразования термо-ЭДС. Преобразователь сопротивления и термо-ЭДС в напряжение...
Тип: Изобретение
Номер охранного документа: 0002612200
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ac7a

Устройство для определения свойств материала тонкостенных полусферических сегментов

Изобретение относится к исследованию механических свойств материалов, а именно к определению технологических параметров процессов (усилий, напряжений, деформаций и перемещений), в том числе и неразрушающим способом. Устройство содержит силовую раму, в состав которой входит нижнее основание, на...
Тип: Изобретение
Номер охранного документа: 0002611979
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.add0

Взрывозащитная камера для проведения взрывных работ и способ локализации токсичных веществ и продуктов взрыва в случае несанкционированной потери ее герметичности

Взрывозащитная камера (ВЗК) для проведения взрывных работ и способ локализации токсичных веществ и продуктов взрыва в случае несанкционированной потери герметичности ВЗК относится к области взрывных работ и исследования взрывных быстропротекающих процессов и может быть применена при разработке...
Тип: Изобретение
Номер охранного документа: 0002612699
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.af26

Способ сборки оптико-механического блока космического аппарата

Способ сборки оптико-механического блока космического аппарата относится к области космического оптического приборостроения и может быть использован при сборке, юстировке и калибровке крупногабаритных оптико-механических блоков, предназначенных для работы в космосе. Способ включает следующие...
Тип: Изобретение
Номер охранного документа: 0002610919
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.afe7

Контейнер для хранения и транспортирования отработавших тепловыделяющих сборок и чехол для их размещения

Изобретение относится к контейнерам и чехлам, предназначенным для транспортирования и хранения отработавшего ядерного топлива. Контейнер содержит металлический корпус, концентрично закрепленные на комингсе цилиндрические обечайки. Между вкладышами и наружной обечайкой размещены цилиндрические...
Тип: Изобретение
Номер охранного документа: 0002611057
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b348

Способ метания из ствольной пороховой баллистической установки

Изобретение относится к газодинамическим устройствам и касается наземных отработок новых образцов боеприпасов с использованием ствольных пороховых баллистических установок (ПБУ). Пороховой заряд размещают в зарядной камере. Вводят в установку метаемый объект и инициируют заряд. При этом...
Тип: Изобретение
Номер охранного документа: 0002613639
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b72d

Способ воспламенения порохового заряда в баллистической установке и установка для его осуществления

Группа изобретений относится к испытательной технике. Способ воспламенения порохового заряда включает размещение модулей порохового заряда, его воспламенение. Пороховой заряд выполняют состоящим из двух разнесенных модулей. Первый модуль устанавливают вплотную к отверстию, предназначенному для...
Тип: Изобретение
Номер охранного документа: 0002614440
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b825

Сверхширокополосный генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В...
Тип: Изобретение
Номер охранного документа: 0002614986
Дата охранного документа: 03.04.2017
+ добавить свой РИД