×
25.08.2017
217.015.c1d9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам определения состава и количества компонентов, входящих как в природные минералы, так и соединения, полученные в различных химических реакциях, при действии температуры и давления. Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO и их последующим синтезом, включает определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм. Значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм. Техническим результатом является определение концентрации манганита лантана для порошков, полученных в различных условиях. 4 ил., 1 табл., 7 пр.

При высокотемпературном синтезе твердых растворов из смесей нескольких порошков их концентрация - концентрация основной фазы (ОФ) - будет определяться технологическими условиями: температурой и временем прогрева, типом и концентрацией составляющих смесей. Для определения концентрации ОФ, образованных новых соединений и не прореагировавших исходных составляющих смесей существует несколько способов, основанных на различных физических процессах. Наиболее распространенным является рентгенофазовый анализ (РФА), осуществляемый с помощью рентгеновских дифрактометров. При таком способе концентрацию соединений, находящихся в синтезируемом порошке, определяют по интенсивности рентгеновских лучей, отраженных от различных узлов кристаллических решеток ОФ и составляющих [1, 2].

Известен и широко применяется спектрофотометрический способ определения концентрации соединений в твердой фазе. Он заключается в помещении в жидкость данного соединения, измерении спектров пропускания как самой жидкости, так и раствора с этим соединением. По полученным значениям коэффициента пропускания на определенных длинах волн рассчитывается оптическая плотность, строится графическая зависимость оптической плотности от концентрации соединения. Затем по этой зависимости для конкретного вещества определяется значение концентрации по результатам измерения оптической плотности [1, 2].

Если синтезированное или природное соединение содержит несколько составляющих - смесь компонентов, то для определения концентрации каждой составляющей данным способом градуировку необходимо проводить по каждой составляющей на определенном спектральном участке или при определенной длине волны излучения. И затем, сопоставляя градуировки для каждой составляющей, определить их концентрацию.

В спектрах диффузного отражения манганитов редкоземельных элементов (МРЭ) в солнечном диапазоне (02-2,5 мкм) в области 0,5-0,6 мкм регистрируется "провал" в значениях коэффициента отражения. Величина провала зависит от типа замещающего элемента и его концентрации. Например, в соединениях La(1-x)CaxMnO3 (фиг. 1) провал зарегистрирован в области 0,2-1,2 мкм, минимальное значение коэффициента отражения соответствует 0,65 мкм. При увеличении концентрации ионов кальция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения как во всей области провала 0,2-1,2 мкм, так и в точке минимального значения увеличивается от 0,18 до 0,22 и 0,24 соответственно [3].

По величине провала в спектрах диффузного отражения можно определять концентрацию дефектов в порошках, характеризующих технологию их получения или последующей обработки. Например, в спектрах диффузного отражения порошков диоксида циркония регистрировали "провал" в ультрафиолетовой области вблизи края основного поглощения. Было установлено [4, 5], что он определяется ионами Zr3+, концентрация которых изменяется в зависимости от условий получения порошков ZrO2, от режимов их прессования (фиг. 2) или при облучении.

В соединениях La(1-x)SrxMnO3 (фиг. 3) провал зарегистрирован в области 0,35-0,85 мкм, минимальное значение коэффициента отражения соответствует области спектра 0,52-0,6 мкм. При увеличении концентрации ионов стронция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения во всей области "провала" уменьшается. В области минимального значения он уменьшается от 0,18 до 0,17 и 0,15, соответственно. Значение длины волны с наименьшей величиной коэффициента отражения не определено [6].

Регистрируемый "провал" в значениях коэффициента отражения характеризует свойства образованных соединений при синтезе и может служить мерой определения концентрации ОФ. Данный способ выбран в качестве прототипа.

В отличие от прототипа, в предлагаемом способе производится сопоставление минимального значения коэффициента отражения в области провала соединений La(1-x)SrxMnO3, соответствующего длине волны 546 нм, для каждого порошка, синтезированного в различных режимах. Для определения концентрации МРЭ используются данные рентгенофазового анализа (РФА) и спектров диффузного отражения. Изменением условий синтеза соединений в виде порошков достигаются различные значения концентрации La(1-x)SrxMnO3, которые определяются методом РФА. Для каждого типа синтезированного порошка определяется коэффициент отражения на длине волны 546 нм. Затем производится сопоставление полученных значений концентрации La(1-x)SrxMnO3 со значениями коэффициента отражения на длине волны 546 нм для порошков, синтезированных в различных условиях. Полученная графическая зависимость является градуировочной для определения концентрации основной фазы - соединений La(1-)SrxMnO3.

Для получения зависимости концентрации La(1-x)SrxMnO3 от коэффициента отражения и построения градуировочной зависимости проводили экспериментальные исследования, в которых в различных режимах синтеза получали различную концентрацию ОФ и определяли коэффициент отражения на длине волны 546 нм.

Пример 1. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы. Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 800°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 19,6 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,8%.

Пример 2. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 900°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 35,1 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,5%.

Пример 3. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1000°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 59,6 мас. %, в остальной состав входят новое соединение Mn3O4, и часть не прореагировавшего исходного соединения La2O3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 18,8%.

Пример 4. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1100°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 79,8 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,9%.

Пример 5. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 84,4 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,3%.

Пример 6. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1250°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 88,5 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,9%.

Пример 7. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 6 часов при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 92,1 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,5%.

Полученные значения концентрации ОФ и коэффициента отражения на длине волны 546 нм для указанных режимов прогрева смесей порошков сведены в таблицу.

Построенный по данным таблицы график (фиг. 4) показывает, что экспериментальные результаты удовлетворительно укладываются на одну прямую, которая и является градуировочной зависимостью. По ней, зная коэффициент отражения на длине волны 546 нм, можно определить концентрацию манганитов лантана.

Список использованных источников

1. Физические методы исследования неорганических веществ. / Под ред. А.Б. Никольского. М.: Академия, 2006, 444 с.

2. Михайлов М.М. Радиационное и космическое материаловедение. Изд-во Томского университета, Томск, 2008, 440 с.

3. G. Tang, Y. Yu, Y. Cao, W. Chen, The thermochromic properties of La1-xSrxMnO3 compounds, Solar Energy Materials & Solar Cells, vol. 92, pp. 1298-1301, 2008.

4. Михайлов M.M., Рябчикова Л.Е., Кузнецов Н.Я. Способ отборочных испытаний порошков двуокиси циркония. // АС №1152358 от 22 декабря 1984 г.

5. Михайлов М.М., Кузнецов Н.Я. Образование центров окраски в порошках ZrO2 при прессовании и последующем облучении. // Неорганические материалы, 1988, т. 24, №5, с. 785-789.

6. K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo, A. Nakamura. Optical Reflectivity Spectra Measured on Cleaved Surfaces of La1-xSrxMnO3: Evidence against Extremely Small Drude Weight, Journal of the Physical Society of Japan, vol. 68, pp. 1828-1831, 1999.

Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO с последующим их синтезом, включающий определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм, отличающийся тем, что значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 64.
20.06.2016
№217.015.03de

Способ приготовления жидкого антиоксиданта

Изобретение относится к способу приготовления жидкого антиоксиданта. Сущность предлагаемого способа заключается в том, что в пресную воду, находящуюся в сосуде в равновесном состоянии с окружающей средой, насыпают картофельный крахмал в весовом соотношении крахмал : вода - 1:(50-100), затем...
Тип: Изобретение
Номер охранного документа: 0002587541
Дата охранного документа: 20.06.2016
12.01.2017
№217.015.59ae

Устройство защиты от импульсных сигналов с заданным уровнем их ослабления

Изобретение относится к электротехнике и может использоваться для защиты от импульсных сигналов с заданным уровнем их ослабления. Технический результат состоит в обеспечении защиты от коротких импульсов с опасно высоким напряжением с заданным уровнем их ослабления в линиях передачи. Для этого...
Тип: Изобретение
Номер охранного документа: 0002588014
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.620f

Устройство защиты от импульсных сигналов с выравниванием амплитуд разложенных импульсов

Устройство защиты от импульсных сигналов с выравниванием амплитуд разложенных импульсов относится к электротехнике и используется для защиты аппаратуры от импульсов. Техническим результатом является выравнивание амплитуд разложенных импульсов для обеспечения более совершенной защиты от коротких...
Тип: Изобретение
Номер охранного документа: 0002588603
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.74cc

Стробируемая телевизионная система с импульсным источником подсвета

Изобретение относится к оптическому приборостроению, а именно к системам, предназначенным для обнаружения различных объектов и наблюдения за ними в условиях ограниченной видимости (в темное время суток, при наличии дождя и тумана, во время снегопада, при задымлении окружающей среды, во время...
Тип: Изобретение
Номер охранного документа: 0002597889
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7b44

Меандровая линия задержки из двух витков, защищающая от сверхкоротких импульсов

Изобретение относится к радиотехнике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Достигаемый технический результат - ослабление амплитуды сверхкоротких импульсов(СКИ). Линия задержки включает виток, состоящий из одного опорного проводника, двух...
Тип: Изобретение
Номер охранного документа: 0002600098
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.81bb

Способ напыления тонкопленочных покрытий на поверхность полупроводниковых гетероэпитаксиальных структур методом магнетронного распыления

Способ включает формирование в известной магнетронной распылительной системе планарного типа магнитного поля, зажигание разряда в скрещенных электрическом и магнитном полях, распыление материала катода и его осаждение на поверхность полупроводниковой гетероэпитаксиальной структуры. Между...
Тип: Изобретение
Номер охранного документа: 0002601903
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8b7e

Способ определения электрооптического коэффициента оптических кристаллов с высокой электропроводностью

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью. Способ осуществляется следующим образом: кристалл с высокой электропроводностью помещают в одно из плеч...
Тип: Изобретение
Номер охранного документа: 0002604117
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9069

Способ трассировки печатных проводников с дополнительным диэлектриком для цепей с резервированием

Изобретение относится к конструированию печатных плат, конкретно - к способам их трассировки. Технический результат состоит в уменьшении восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшение уровня кондуктивных эмиссий от резервируемой цепи. Для этого способ...
Тип: Изобретение
Номер охранного документа: 0002603851
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.906a

Способ трассировки печатных проводников цепей с резервированием

Изобретение относится к конструированию печатных плат, конкретно к способам их трассировки. Технический результат состоит в уменьшении восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшении уровня кондуктивных эмиссий от резервируемой цепи. Для этого способ трассировки...
Тип: Изобретение
Номер охранного документа: 0002603850
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90d0

Способ резервирования плоских кабелей

Изобретение относится к электротехнике, конкретно к способам резервирования кабелей. Технический результат состоит в уменьшение восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшение уровня кондуктивных эмиссий от резервируемой цепи. Для этого в способе резервирования...
Тип: Изобретение
Номер охранного документа: 0002603848
Дата охранного документа: 10.12.2016
Показаны записи 31-40 из 71.
20.06.2016
№217.015.03de

Способ приготовления жидкого антиоксиданта

Изобретение относится к способу приготовления жидкого антиоксиданта. Сущность предлагаемого способа заключается в том, что в пресную воду, находящуюся в сосуде в равновесном состоянии с окружающей средой, насыпают картофельный крахмал в весовом соотношении крахмал : вода - 1:(50-100), затем...
Тип: Изобретение
Номер охранного документа: 0002587541
Дата охранного документа: 20.06.2016
12.01.2017
№217.015.59ae

Устройство защиты от импульсных сигналов с заданным уровнем их ослабления

Изобретение относится к электротехнике и может использоваться для защиты от импульсных сигналов с заданным уровнем их ослабления. Технический результат состоит в обеспечении защиты от коротких импульсов с опасно высоким напряжением с заданным уровнем их ослабления в линиях передачи. Для этого...
Тип: Изобретение
Номер охранного документа: 0002588014
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.620f

Устройство защиты от импульсных сигналов с выравниванием амплитуд разложенных импульсов

Устройство защиты от импульсных сигналов с выравниванием амплитуд разложенных импульсов относится к электротехнике и используется для защиты аппаратуры от импульсов. Техническим результатом является выравнивание амплитуд разложенных импульсов для обеспечения более совершенной защиты от коротких...
Тип: Изобретение
Номер охранного документа: 0002588603
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.74cc

Стробируемая телевизионная система с импульсным источником подсвета

Изобретение относится к оптическому приборостроению, а именно к системам, предназначенным для обнаружения различных объектов и наблюдения за ними в условиях ограниченной видимости (в темное время суток, при наличии дождя и тумана, во время снегопада, при задымлении окружающей среды, во время...
Тип: Изобретение
Номер охранного документа: 0002597889
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7b44

Меандровая линия задержки из двух витков, защищающая от сверхкоротких импульсов

Изобретение относится к радиотехнике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Достигаемый технический результат - ослабление амплитуды сверхкоротких импульсов(СКИ). Линия задержки включает виток, состоящий из одного опорного проводника, двух...
Тип: Изобретение
Номер охранного документа: 0002600098
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.81bb

Способ напыления тонкопленочных покрытий на поверхность полупроводниковых гетероэпитаксиальных структур методом магнетронного распыления

Способ включает формирование в известной магнетронной распылительной системе планарного типа магнитного поля, зажигание разряда в скрещенных электрическом и магнитном полях, распыление материала катода и его осаждение на поверхность полупроводниковой гетероэпитаксиальной структуры. Между...
Тип: Изобретение
Номер охранного документа: 0002601903
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8b7e

Способ определения электрооптического коэффициента оптических кристаллов с высокой электропроводностью

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью. Способ осуществляется следующим образом: кристалл с высокой электропроводностью помещают в одно из плеч...
Тип: Изобретение
Номер охранного документа: 0002604117
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9069

Способ трассировки печатных проводников с дополнительным диэлектриком для цепей с резервированием

Изобретение относится к конструированию печатных плат, конкретно - к способам их трассировки. Технический результат состоит в уменьшении восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшение уровня кондуктивных эмиссий от резервируемой цепи. Для этого способ...
Тип: Изобретение
Номер охранного документа: 0002603851
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.906a

Способ трассировки печатных проводников цепей с резервированием

Изобретение относится к конструированию печатных плат, конкретно к способам их трассировки. Технический результат состоит в уменьшении восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшении уровня кондуктивных эмиссий от резервируемой цепи. Для этого способ трассировки...
Тип: Изобретение
Номер охранного документа: 0002603850
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90d0

Способ резервирования плоских кабелей

Изобретение относится к электротехнике, конкретно к способам резервирования кабелей. Технический результат состоит в уменьшение восприимчивости резервируемой цепи к внешним кондуктивным эмиссиям и уменьшение уровня кондуктивных эмиссий от резервируемой цепи. Для этого в способе резервирования...
Тип: Изобретение
Номер охранного документа: 0002603848
Дата охранного документа: 10.12.2016
+ добавить свой РИД