×
25.08.2017
217.015.c14a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность изобретения заключается в обработке нагретого алюминия газообразными реагентами в виде галогенида алюминия, например трифторида алюминия, и азотсодержащего газа и последующую конденсацию конечного продукта, причем порошок трифторида алюминия размещают в одной реакционной камере с гранулами металлического алюминия и испаряют одновременно при температуре 1050-1150°C, а конденсацию осуществляют на поверхности жидкого алюминия. Изобретение позволяет получать нитевидный нитрид алюминия со средним диаметром менее 100 нм по всей протяженности волокна и с соотношением длины волокна к диаметру более 100. 4 ил., 2 пр.

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения нитевидного нитрида алюминия в виде нановискеров, и может быть использовано при разработке эффективных электролюминофоров для новых источников света в видимом и ультрафиолетовом диапазонах, а также при создании элементов нано-оптоэлектроники и люминесцентно-активных наноразмерных сенсоров медико-биологического профиля.

Нитрид алюминия благодаря широкой запрещенной зоне 6.2 эВ и уникальным физико-химическим свойствам является перспективным материалом для целей оптоэлектроники. Наиболее перспективными структурами на основе AlN с уникальными транспортными, электрическими, люминесцентными и адсорбционными свойствами являются нитевидные нанокристаллы - новый класс материалов для элементов и сенсоров современной микроэлектроники и нано-оптоэлектроники многоцелевого назначения (В.Г. Дубровский, Г.Э. Цырлин, В.М. Устинов. Полупроводниковые нитевидные нанокристаллы: синтез, свойства, применение // Физика и техника полупроводников, 2009, том 43, вып. 12, с. 1585-1628; Е.И. Гиваргизов. Рост нитевидных и пластинчатых кристаллов из пара. М. Наука, 1977, - 304 с.).

Известны способы получения нитрида алюминия высокотемпературным (1300-1700°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота (заявка Великобритании №2233969, МПК C01B 21/072, опубл. 23.01.91 (средний размер частиц менее 1 мкм); заявка Японии №3-48123, МПК C01B 21/072, опубл. 23.07.91) и кристаллов нитрида алюминия совместно с монокристаллами фторидов металлов (Патент США №4172754, МПК C01B 21/06, опубл. 10.08.71). Недостатком подобных способов является то, что они позволяют получать только мелкодисперсные порошки или керамические образцы AlN. Нитевидные кристаллы AlN (нановискеры нитрида алюминия) такими известными способами с использованием вышеуказанных патентных документов получить нельзя.

Патентом защищен способ получения волокон нитрида алюминия путем спекания смеси алюминий содержащего соединения, полимерного органического вещества, углеродсодержащего и/или азотсодержащего соединения (Заявка Франции №2647436, МПК C04B 35/581, опубл. 30.11.90). Процесс синтеза ведут в неокислительной инертной атмосфере, содержащей азот. Однако при использовании этого известного способа волокна имеют малое отношение длины волокна к диаметру (не более 10-50). Синтезируемые образцы A1N имеют диаметр от 100 мкм до 1 мм. Получить нитевидные волокна наноразмерного диаметра и с отношением длины волокна к диаметру более 100 известный способ не позволяет.

Разработан способ получения игольчатого нитрида алюминия, включающий продувку алюминиевой пудры, нагретой до 950-1000°C, смесью аргона и аммиака при дозированной подаче последней, что обеспечивает образование и рост игольчатых кристаллов нитрида алюминия на поверхности алюминиевых частиц (Заявка США №4322395, МПК C01B 21/072. опубл. 30.03.82). Однако известная технология требует контроля полноты протекания реакции, что удорожает технологию. Недостатком данного способа является также то, что игольчатые кристаллы AlN, получаемые подобным способом, загрязнены металлическим алюминием и теряют свои уникальные свойства. Главным недостатком известного способа является то, что получить нитевидные волокна с отношением длины волокна к диаметру, равным 100 и более, известный метод не позволяет. Характерный размер отдельных иголок может быть около 2 мм длиной и 0.2 мм в диаметре, таким образом аспектное соотношение составляет 10:1.

Нитевидные кристаллы - вискеры нитрида алюминия могут быть получены высокотемпературным (1800-2000°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота в присутствии катализатора роста (Заявка Франции №0749940, МПК C01B 21/072, опубл. 27.12.96). Однако данный способ является сложным в технологическом отношении и получаемые по этому способу вискеры AlN имеют диаметр в диапазоне 1-50 мкм.

Существует способ получения вискеров нитрида алюминия, включающий одновременное проведение реакции карботермического азотирования в присутствии реакции прямого азотирования и газотранспортной реакции (Заявка США №5693305, МПК C01B 21/72, опубл. 02.12.97). Однако получаемые волокна имеют диаметр 0.3-3 мкм и малое отношение длины волокна к диаметру (не более 7-20).

Разработан способ получения нанопроволоки нитрида алюминия высокотемпературным (1500-2200°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота и аммиака (Заявка Китая №101323439, МПК C01B 21/072, опубл. 17.12.08). Недостатками такого процесса синтеза являются его сложность и необходимость использовать очень высокие температуры. Контролируемый диаметр нанопроволок находится в диапазоне 50-200 нм.

Известен способ получения нанопроволоки нитрида алюминия (Заявка Китая №103539087, МПК C01B 21/072, опубл. 29.01.14). Однако в процессе синтеза применяются кремниевые пластины с напылением золота, используемого в качестве инициатора роста, что приводит к удорожанию технологии.

Нитевидный нитрид алюминия может быть получен путем обработки нагретого алюминия газообразными галогенидами алюминия, подаваемыми со скоростью 0,1-6 см3/мин на каждый 1 см2 поверхности конденсации, и азотсодержащими газами, причем соотношение между галогенидом алюминия и азотом поддерживают на уровне 1:(1,2-12), а конденсацию ведут на подложке из компактного поликристаллического нитрида алюминия (патент РФ №2106298, МПК C01B 21/072, опубл. 10.03.98).

Способ обеспечивает получение нитрида алюминия в виде волокон с соотношением длины к диаметру более 100, но характерные размеры авторами не указаны. Однако данный способ является сложным в технологическом отношении.

Наиболее близким к заявляемому является способ получения нитрида алюминия в виде нитевидных кристаллических волокон с отношением длины волокна к диаметру более 200-300 путем пропускания через нагретый алюминий газообразных реагентов в виде азота и галогенидов алюминия с регулируемой скоростью 0,1-6 см3/мин на каждый 1 см2 поверхности конденсации и последующей конденсацией на подложке из чистого графита (патент РФ №2312061, МПК C01B 21/072, опубл. 10.12.07, бюл. №34). Недостатком получаемых волокон являются большой диаметр: средняя величина по всей длине волокна составляет 5-6 мкм, оконечный участок волокна имеет согласно описанию толщину (диаметр) 2,9 мкм и только самый кончик/острие волокна имеет диаметр 60 нм.

Задачей настоящего изобретения является разработка технологии получения нитрида алюминия в виде нитевидных кристаллов со средним диаметром менее 100 нм по всей протяженности волокна и соотношением длины к диаметру более 100.

Поставленная задача решается за счет того, что в способе, включающем взаимодействие нагретого алюминия с азотом и галогенидами алюминия (III), скорость подачи которых находится на уровне 0.1-6.0 см3/мин на каждый 1 см2 поверхности конденсации, весь процесс синтеза ведут в реакционной камере, куда газообразный галогенид алюминия, необходимый для обеспечения процесса синтеза нитевидных волокон нитрида алюминия, поступает в результате испарения порошка тригалогенида алюминия из находящегося внутри реакционной камеры внешнего тигля, а конденсацию ведут на поверхности жидкого алюминия, находящегося в малом внутреннем тигле, который в свою очередь находится внутри внешнего тигля в той же реакционной камере. Реакционная камера во время процесса синтеза заполняется азотсодержащим газом, подаваемым в необходимом количестве в область над жидким алюминием.

На фиг. 1 схематически представлена установка для реализации заявляемого способа синтеза, сущность которого заключается в следующем. Внутри реакционной камеры 1 испаряли порошок трифторида алюминия, находящийся во внешнем тигле 2. Пары трифторида алюминия поступали во внутренний тигель 3, наполненный жидким алюминием, при температуре 1050-1150°C нагревателя печи 4, достаточной для образования субгалогенида алюминия. Во внутреннее пространство реакционной камеры 1 в область над жидким алюминием подавали азотсодержащий газ, например N2 и NH3, из баллона 5 в соотношении 1:1.2 и выше относительно трифторида алюминия необходимого по стехиометрии химической реакции.

В этом случае на поверхности жидкого алюминия идут следующие реакции:

2Al(жид)+AlF3(газ)=3AlF(газ)

3AlF(газ)+N2(газ)=2AlN(тв.)+AlF3(газ)

Нитрид алюминия образуется в виде нитевидных нанокристаллов на активных центрах роста AlN, возникающих на поверхности жидкого алюминия. На этих активных центрах по ходу процесса синтеза формируется слой AlN из нитевидных волокон со средним диаметром менее 100 нм по всей длине волокна при соотношении длины волокна к диаметру более 100 (фиг. 2).

Способ иллюстрируется следующими примерами выполнения.

Пример 1. Способ получения нитевидного нитрида алюминия.

Способ получения нитевидного нитрида алюминия включает следующие процедуры. Исходный порошок трифторида алюминия испаряют из внешнего тигля, расположенного в реакционной камере, при температуре 1050°С, пары трифторида алюминия поступают во внутренний тигель с жидким алюминием при такой же температуре. В пространство над тиглями подают азот со скоростью примерно в 5 раз больше, чем необходимо по стехиометрии реакции. Продолжительность процесса синтеза составляла 2 часа. За это время в приповерхностных слоях жидкого алюминия сформировались массивы из нитевидных волокон - нановискеров AlN. Толщина массивов из нитевидных волокон около 1 мм. Анализ снимков, полученных с помощью электронного микроскопа Sigma VP Carl Zeiss, показал, что A1N представляет собой нитевидные нанокристаллы со средним диаметром менее 100 нм по всей длине волокна и соотношением длины к диаметру более 100 (фиг. 3). С помощью рентгенофазового анализа на дифрактометре X'PertPro MPD PANalytical установлено, что продуктом синтеза является гексагональный нитрид алюминия.

Пример 2. Способ получения нитевидного нитрида алюминия.

Способ получения нитевидного нитрида алюминия включает следующие процедуры. Исходный порошок трифторида алюминия испаряют из внешнего тигля, расположенного в реакционной камере, при температуре 1150°С, пары трифторида алюминия поступают во внутренний тигель с жидким алюминием при такой же температуре. В пространство над тиглями подают аммиак со скоростью примерно в 5 раз больше, чем необходимо по стехиометрии реакции. Продолжительность процесса синтеза составляла 2 часа. За это время в приповерхностных слоях жидкого алюминия сформировался массив из нановискеров AlN с толщиной слоя около 1 мм. Снимки этих нитевидных нанокристаллов, полученные на электронном микроскопе Sigma VP Carl Zeiss, приведены на фиг. 4. Как видно из фиг. 4, AlN представляет собой нитевидные нанокристаллы со средним диаметром менее 100 нм по всей длине волокна и соотношением длины к диаметру более 100. Рентгенофазовый анализ конечного продукта на дифрактометре X'PertPro MPD PANalytical показал, что синтезированные нановискеры AlN получены в виде массивов из волокон гексагонального нитрида алюминия. Установлено, что средний диаметр получаемых по предлагаемому способу нитевидных волокон по всей их длине составляет 77±16 нм.

Техническим результатом является расширение арсенала известных технологий получения нитрида алюминия путем создания дополнительного способа получения нитевидного нитрида алюминия со средним диаметром менее 100 нм по всей протяженности волокна и с соотношением длины волокна к диаметру более 100.

Способ получения нитевидного нитрида алюминия, включающий обработку нагретого алюминия газообразными реагентами в виде галогенида алюминия и азотсодержащего газа и последующую конденсацию конечного продукта, отличающийся тем, что галогенид алюминия размещают в одной реакционной камере с алюминием и испаряют одновременно при температуре 1050-1150°С, а конденсацию ведут на поверхности жидкого алюминия.
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 216.
13.02.2018
№218.016.1f2f

Натриевая соль 3-нитро-4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-8-карбоновой кислоты, дигидрат

Изобретение относится к натриевой соли 3-нитро-4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-8-карбоновой кислоты, дигидрату, Технический результат: получено новое соединение, проявляющее антигликирующие свойства. 2 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002641107
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.20e7

Способ измельчения минерального сырья

Изобретение относится к горнорудной промышленности и может быть использовано при измельчении минерального сырья перед обогащением или гидрометаллургической переработкой. Способ включает предварительную обработку водным раствором ПАВ с наложением импульсного физического воздействия и последующее...
Тип: Изобретение
Номер охранного документа: 0002641527
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3380

Струйный аппарат с изменяемым осевым расстоянием между соплом и камерой смешения

Струйный аппарат предназначен для повышения эффективности и надежности функционирования вакуумных насосов. Аппарат включает расположенные последовательно, трубопровод подвода пассивной среды, сопло, приемную камеру, камеру смешения, диффузор и переходный патрубок. Пассивная среда подводится к...
Тип: Изобретение
Номер охранного документа: 0002645635
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.361b

Способ изготовления круглых кристаллов с фаской, устройство и лезвийный инструмент для осуществления способа

Изобретение относится к области изготовления силовых полупроводниковых приборов и может быть использовано для разделения полупроводниковых пластин на круглые кристаллы. Способ включает формирование фаски алмазным лезвийным инструментом и вырезку кристаллов из пластины, которые выполняют одним...
Тип: Изобретение
Номер охранного документа: 0002646301
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.448a

Гидродинамический теплогенератор для сети теплоснабжения

Изобретение может быть использовано в теплоэнергетике в качестве автономного источника тепловой энергии. Гидродинамический кавитационный теплогенератор содержит два источника электромагнитного поля и два статора от асинхронных электродвигателей, соосно и встречно расположенных на немагнитном...
Тип: Изобретение
Номер охранного документа: 0002650015
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4657

Универсальный термоэнергетический генератор. варианты

Изобретение относится к области энергетик и может быть использовано в качестве автономных источников энергопитания. Заявлен термоэнергетический генератор, который содержит батарею термоэнергетических модулей, горячие электроды которых подключены к источнику тепловой энергии, а холодные...
Тип: Изобретение
Номер охранного документа: 0002650439
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
Показаны записи 71-80 из 82.
04.04.2018
№218.016.361b

Способ изготовления круглых кристаллов с фаской, устройство и лезвийный инструмент для осуществления способа

Изобретение относится к области изготовления силовых полупроводниковых приборов и может быть использовано для разделения полупроводниковых пластин на круглые кристаллы. Способ включает формирование фаски алмазным лезвийным инструментом и вырезку кристаллов из пластины, которые выполняют одним...
Тип: Изобретение
Номер охранного документа: 0002646301
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.59b6

Способ получения люминофора на основе губчатого нанопористого оксида алюминия

Изобретение относится к химической промышленности и может быть использовано при изготовлении эффективных люминофоров для элементов нано-оптоэлектроники и источников света в видимом диапазоне. Алюминий анодируют в растворе 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле при постоянном...
Тип: Изобретение
Номер охранного документа: 0002655354
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
09.08.2018
№218.016.7908

Термолюминофор

Изобретение относится к области низкотемпературной дозиметрии рентгеновского, а также смешанного электронного и гамма-излучения с использованием термолюминесцентных датчиков – термолюминофоров. Предложен термолюминофор на основе фторида натрия, который дополнительно содержит фторид лития и...
Тип: Изобретение
Номер охранного документа: 0002663296
Дата охранного документа: 03.08.2018
11.10.2018
№218.016.90c4

Термолюминофор

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlO и нитрида алюминия, содержащего ряд примесей, при этом имеет...
Тип: Изобретение
Номер охранного документа: 0002668942
Дата охранного документа: 05.10.2018
10.04.2019
№219.017.056a

Способ получения волоконных сцинтилляторов

Изобретение относится к сцинтилляционным материалам, конкретно к волоконным сцинтилляторам, предназначенным для измерения ионизирующих излучений. Способ получения волоконных сцинтилляторов, включающий разогрев материала сцинтиллятора с последующим формированием структуры волокна,...
Тип: Изобретение
Номер охранного документа: 0002361239
Дата охранного документа: 10.07.2009
20.05.2019
№219.017.5c90

Способ диагностики эволюции нанотонких пространственных структур

Использование: для диагностики реальной структуры нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики эволюции нанотонких пространственных структур включает электронно-микроскопические, микродифракционные исследования, выявление последовательности...
Тип: Изобретение
Номер охранного документа: 0002687876
Дата охранного документа: 16.05.2019
+ добавить свой РИД