×
25.08.2017
217.015.bf77

Результат интеллектуальной деятельности: СПОСОБ НАЧАЛЬНОГО ОРИЕНТИРОВАНИЯ ГИРОСКОПИЧЕСКОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ДЛЯ НАЗЕМНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано в системах навигации, топопривязки и ориентирования наземных подвижных объектов. Технический результат - расширение функциональных возможностей. Для этого в гироскопической навигационной системе для наземных подвижных объектов, состоящей из гирокурсоизмерителя (ГКИ), вычислителя (картографа), датчика пути и спутниковой навигационной системы (СНС), исходный дирекционный угол продольной оси объекта α определяют по параметрам СНС, ГКИ и датчика пути в следующей последовательности: производят определение координат объекта по СНС в начальной точке маршрута, осуществляют передвижение объекта на короткие расстояния и вычисляют дистанции прямолинейного перемещения движущегося объекта относительно последних данных СНС о местоположении, объект останавливают, повторно получают данные СНС о местоположении объекта в месте остановки, вычисляют вектор дирекционного угла объекта по информации, полученной от спутниковой навигационной системы и автономного (одометрического) каналов, вычисленный вектор используют для определения поправки Δα в текущий дирекционный угол объекта, суммируют полученную поправку с текущим дирекционным углом и используют полученный дирекционный угол в качестве исходного дирекционного угла α как параметра начального ориентирования. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах навигации, топопривязки и ориентирования наземных подвижных объектов.

Известно применение на наземных подвижных объектах одометрических навигационных систем, в общем случае состоящих из гироскопического измерителя, электромеханического датчика пути и координатора или электронного картографа. Такие навигационные системы, как правило, предназначены для:

- непрерывного автоматического определения и индикации координат и дирекционного угла объекта;

- непрерывного автоматического определения и индикации дирекционного угла объекта на пункт назначения;

- вычисления координат целей по введенным в аппаратуру дальности до цели и углу визирования на цель.

Как правило, циклограмма работы такой навигационной системы включает следующие этапы: начальная выставка (гирокомпасирование) или начальное ориентирование и навигация (работа), заключающаяся в определении местоположения объекта в движении. Варианты исполнения этих этапов могут быть различными. В частности, может быть несколько вариантов выполнения начальной выставки или начального ориентирования в зависимости от условий выполнения выставки и наличия внешней информации о координатах и углах ориентации объекта.

Известен способ определения угловой ориентации (патент РФ №2248004), основанный на приеме сигналов от космических аппаратов глобальных навигационных спутниковых систем на разнесенные приемники сигнала, расположенные на объекте так, чтобы они не лежали на одной прямой. Приемниками сигнала являются GPS-приемники, количеством не менее трех. По их показаниям определяют координаты каждого приемника сигнала, на основании которых вычисляют положение векторов, задающих связанную с объектом систему координат.

Одним из недостатков данного способа является необходимость не менее трех разнесенных приемников сигнала, что существенно усложняет систему и увеличивает габариты изделия.

Известна система самоориентирующаяся гироскопическая курсокреноуказания (патент РФ 2316730), обеспечивающая работу в режиме гирокомпаса во время стоянки объекта и гироазимута при движении объекта. Такие системы называют двухрежимными. В начале, после включения, система работает в режиме гирокомпаса при этом по сигналам о величине горизонтальной составляющей угловой скорости вращения Земли с гироскопических чувствительных элементов аналитически рассчитывается исходный азимут объекта. После завершения режима гирокомпаса (определения исходного азимута) система работает в режиме хранения азимута. В этом режиме по информации о разворотах корпуса прибора по курсу определяется азимут (дирекционный угол) подвижного объекта, а также наклоны подвижного объекта и решаются навигационные задачи.

Недостатком известной гироскопической системы является сложность реализации алгоритмов решения задачи определения исходного азимута объекта, требуется значительное время на определение азимута и высокая стоимость аппаратуры.

Известен способ решения навигационных задач, осуществляемый посредством наземной гироскопической навигационной системы для подвижных объектов (патент РФ №2308681), принятый за прототип, основанный на разложении элементарных отрезков пути на две составляющие в прямоугольной системе координат и последующем алгебраическом суммировании этих составляющих с исходными координатами.

Указанная гироскопическая навигационная система выполнена на базе астатического гироскопа с использованием метода счисления пути, в которой реализуется комбинированная навигационная аппаратура, имеющая: автономный (одометрический) режим работы от гирокурсоизмерителя (ГКИ) (гироазимута); режим работы от спутниковой системы навигации (СНС); интегрированный режим работы с коррекцией текущих координат автономного канала по более точной информации спутникового канала, что обеспечивает повышение точности аппаратуры, а применение элементов микропроцессорной техники, использование картографа с цифровой электронной картой местности позволяет расширить функциональные возможности аппаратуры и реализовать обработку сигналов по дополнительным алгоритмам для решения дополнительных навигационных задач.

Гироскопическая навигационная система состоит из гирокурсоизмерителя (ГКИ), картографа (вычислителя), электромеханического датчика пути и спутниковой навигационной системы (СНС) в составе приемника и антенны.

Работа с системой при решении навигационных задач включает в себя начальное ориентирование и определение местоположения объекта в движении. Перед начальным ориентированием определяют координаты исходного пункта маршрута Хисх, Yисх. В качестве исходного пункта, как правило, выбирают контурные точки на местности (пункты государственной геодезической сети, памятники, мосты, специальные точки в постоянных парках и т.д.), при отсутствии привязанных контурных точек их координаты определяются по карте или по СНС.

Начальное ориентирование объекта в зависимости от начальных данных может быть выполнено несколькими способами, например определение исходного дирекционного угла αисх по известному ориентирному направлению или с помощью буссоли.

Определение исходного дирекционного угла αисх по известному ориентирному направлению производится в следующей последовательности:

- производят установку объекта на контрольную точку с известными координатами и дирекционным углом на ориентир αор, так чтобы проекция оси вращения визирного устройства совпадала с контрольной точкой с погрешностью не более 0,5 м;

- с помощью визирного устройства необходимо свизироваться на ориентир, дирекционный угол на который известен, и определить угол визирования на ориентир βвиз;

- определяют исходный дирекционный угол продольной оси объекта αисх в соответствии с формулами:

αисхopвиз

Недостатком данного метода начального ориентирования по известному ориентирному направлению является невозможность его применения в случаях отсутствия объектов с известными координатами и дирекционным углом на ориентир αор или в условиях недостаточной видимости на известный ориентир.

Второй метод определения исходного дирекционного угла с помощью буссоли может применяться при отсутствии ориентиров или в условиях плохой видимости. Определение исходного дирекционного угла продольной оси объекта αисх осуществляется при помощи буссоли ПАБ-2А в следующей последовательности:

- установить объект на исходный пункт;

- установить буссоль на расстоянии не менее 50 м от объекта;

- подготовить буссоль к работе в соответствии с ТО и ИЭ на буссоль;

- свизироваться визирным устройством объекта на центр буссоли и записать угол βвиз;

- свизироваться через монокуляр буссоли на оптический визир объекта;

- записать значение магнитного азимута АМ на оптический визир объекта;

- определить исходный дирекционный угол αисх объекта по формулам:

αисх=30-00+Ам+(П)-βвиз, или

.

Недостатком второго метода начального ориентирования с помощью буссоли является, во-первых, невозможность его применения в условиях недостаточной видимости до 50 м, а также как для первого метода, так и для второго требуется наличие дополнительного оборудования, не входящего в комплект навигационной системы. Выделенные недостатки существенно ограничивают эксплуатационные возможности навигационной системы и снижают мобильность изделия.

Поэтому разработка способа начального ориентирования без дополнительных средств является актуальной проблемой.

Целью изобретения является расширение эксплуатационных возможностей гироскопической навигационной системы для наземных подвижных объектов за счет использования для начального ориентирования параметров спутниковой навигационной системы (СНС), гирокурсоизмерителя (ГКИ) и датчика пути соответственно по определению координат объекта, измерению дирекционного угла и пройденного пути по определенному алгоритму в определенной взаимосвязи.

Поставленная техническая задача решается тем, что в гироскопической навигационной системе для наземных подвижных объектов, состоящей из ГКИ, вычислителя (картографа), датчика пути и спутниковой навигационной системы (СНС) и требующей при решении навигационных задач проведения начального ориентирования, согласно заявляемому изобретению,

способ начального ориентирования осуществляют в следующей последовательности:

(a) определяют местоположение объекта в начальной точке маршрута по информации от СНС;

(b) выполняют движение объекта на короткие расстояния и определяют координаты перемещения движущегося объекта одометрическим каналом относительно исходных данных СНС о местоположении объекта;

(c) объект останавливают;

(d) повторно получают данные СНС о местоположении объекта в месте остановки;

(e) вычисляют векторы направления (дирекционные углы от начальной точки до конечной) пройденного участка по информации, полученной от СНС и автономного (одометрического) каналов;

(f) вычисленные направления векторов используют для определения поправки Δαисх в текущий дирекционный угол объекта;

(g) суммируют полученную поправку с текущим дирекционным углом объекта и используют полученный дирекционный угол в качестве исходного дирекционного угла αисх как параметра начального ориентирования.

Предлагаемый способ начального ориентирования гироскопической навигационной системы для наземных подвижных объектов может быть применен при отсутствии контрольных точек с известными координатами и дирекционными углами на ориентиры, недостатке времени для проведения полного цикла исходного ориентирования, в условиях отсутствия ориентиров и в условиях плохой видимости.

Указанный способ начального ориентирования гироскопической навигационной системы для подвижных объектов позволяет в рамках существующей аппаратной части производить определение дирекционного угла объекта путем совместной обработки координат, определяемых СНС, и одометрическим каналом СТО во время движения объекта с достаточной для навигации точностью.

Проведенный анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявляемого технического решения, позволил установить, что не обнаружено аналогов, характеризующихся признаками, тождественными всей совокупности признаков заявляемого способа начального ориентирования гироскопической навигационной системы для подвижных объектов. Это позволяет сделать вывод о соответствии заявляемой системы критерию «новизна».

Сравнение заявляемого способа начального ориентирования гироскопической навигационной системы для подвижных объектов с другими техническими решениями показывает, что отдельные отличительные признаки в технике широко известны. Так известно применение СНС для получения данных о местоположении объекта. Известно применение вычислений дистанции прямолинейного перемещения движущегося объекта относительно последних данных СНС о местоположении для решения навигационных задач. Однако не обнаружено применение указанных признаков в данной взаимосвязи с другими признаками для достижения вышеуказанного технического результата, следовательно, заявляемый способ начального ориентирования гироскопической навигационной системы для подвижных объектов может рассматриваться как соответствующий критерию изобретения «изобретательский уровень».

Изобретение поясняется чертежами, где:

На Фиг. 1 представлена структурная схема гироскопической навигационной системы для подвижных объектов;

на Фиг. 2 представлена схема измерения дирекционного угла в системе Гаусса-Крюгера, которая представляет собой прямоугольную систему координат, ось X которой совпадает с направлением на Север, а ось Y совпадает с направлением на Восток. Дирекционный угол объекта αi в системе координат Гаусса-Крюгера - это угол между проекцией продольной оси объекта на горизонтальную плоскость и осью X.

Практическое применение настоящего способа начального ориентирования гироскопической навигационной системы для наземных подвижных объектов рассмотрим на примере его применения в гироскопической навигационной системе для неземных подвижных объектов (Фиг. 1), состоящей из гироскопического измерителя 1, вычислителя (картографа) 2, датчика пути 3 и СНС, состоящей из антенны 4 и приемника, который условно не показан, встроенного в картограф.

Работа с системой при решении навигационных задач включает в себя начальное ориентирование и определение местоположения объекта в движении. Операцию начального ориентирования осуществляют в следующей последовательности:

- объект устанавливается в любой точке на открытой местности, где нет помех для приема сигналов СНС;

- система включается и по истечении времени готовности одометрического и спутникового каналов переводится в режим «Самориентирования», при этом в одометрический канал вводятся координаты ХИСХСНС, YИСХСНС, определенные спутниковым каналом, которые заносятся в память микроЭВМ;

- далее начинается движение в произвольном направлении на короткие расстояния Si (Фиг. 2), желательно на прямолинейном участке с предельно допустимой для данной местности скоростью;

- при этом производится вычисление координат движущегося объекта относительно исходных (начальных) данных СНС о местоположении, в процессе движения в одометрическом канале производится вычисление координат в соответствии с ранее описанным алгоритмом по введенным в канал исходным координатам и дирекционному углу, установившемуся в процессе данного запуска;

- примерно через 1 км движения объект останавливают и система переводится в одометрический режим. После чего производится совместная обработка координат и дирекционных углов, полученных с одометрического и спутникового каналов в конечной точке по следующему алгоритму:

- вычисляется дирекционный угол αT с начальной точки маршрута на конечную по координатам, определенным одометрическим каналом по формуле:

где ХТ, YT - координаты конечной точки, определенные одометрическим каналом;

ХИСХСНС, YИСХСНС - координаты начальной точки, определенные спутниковым каналом;

- вычисляется дирекционный угол αИСТ с начальной точки маршрута на конечную по координатам, определенным спутниковым каналом по формуле:

где ХТСНС, YTCHC - координаты конечной точки, определенные спутниковым каналом;

- вычисляется ошибка Δαисх в установке исходного дирекционного угла на исходной точке по формуле:

- вычисляется действительное значение текущего дирекционного угла в точке нахождения объекта согласно выражению:

где αm - приборное значение дирекционного угла на конечной точке до коррекции;

- автоматически вводятся значение дирекционного угла и координаты точки места нахождения объекта Хт СНС, Yт СНС в автономный канал аппаратуры.

После введения оператором координат пункта назначения начинают движение к пункту назначения.

В процессе движения объекта происходят изменения дирекционного угла продольной оси объекта, которые измеряются гирокурсоизмерителем 1 и передаются в вычислитель (микроЭВМ) и туда же поступает информация о пройденном пути объекта, измеряемая датчиком пути 3. По полученной информации от ГКИ в микроЭВМ определяются приращения дирекционного угла αi, после чего рассчитывается текущее значение дирекционного угла объекта как сумма исходного дирекционного угла αисх и приращений дирекционного угла αi, полученных за время движения объекта от исходной точки до текущей. По сигналам датчика пути 3, несущим информацию о пройденном объектом пути, по известному алгоритму в микроЭВМ рассчитываются текущие разности координат пункта назначения и объекта. В соответствии с изменившимися значениями разностей координат пункта назначения и объекта в микроЭВМ по соответствующим алгоритмам вычисляется дирекционный угол на пункт назначения от нового местоположения объекта.

Таким образом, на выходе микроЭВМ имеется информация о текущих координатах и дирекционном угле объекта, координатах цели, дирекционном угле на пункт назначения и дальности до него, которая поступает к внешним устройствам обработки информации и управления или на вход картографа 2.

Эффективность предлагаемого технического решения проверена в изделиях «Система топографического ориентирования (СТО) «ТРОНА-1», серийно изготавливаемых в ОАО «Ковровский электромеханический завод». Без использования традиционной информации по координатам привязанных контурных точек и известных ориентирных направлений, без применения дополнительных средств типа буссоли, проведенное начальное ориентирование по предлагаемому способу обеспечило достаточную точность исходных данных, позволивших получить конечные результаты по ошибке определения координат объекта (топопривязчика 1Т134 на базе автомобиля «Урал») на марше продолжительностью 24 км 0,4% от пройденного пути при допустимой погрешности не более 0,9% для колесных объектов. При этом время, затраченное на этап начального ориентирования, не превысило 10 мин, что значительно меньше среднестатистического значения времени начального ориентирования ранее применяемыми способами.


СПОСОБ НАЧАЛЬНОГО ОРИЕНТИРОВАНИЯ ГИРОСКОПИЧЕСКОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ДЛЯ НАЗЕМНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ НАЧАЛЬНОГО ОРИЕНТИРОВАНИЯ ГИРОСКОПИЧЕСКОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ДЛЯ НАЗЕМНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ НАЧАЛЬНОГО ОРИЕНТИРОВАНИЯ ГИРОСКОПИЧЕСКОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ДЛЯ НАЗЕМНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 43.
26.08.2017
№217.015.e8fe

Система стабилизации линии визирования

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного...
Тип: Изобретение
Номер охранного документа: 0002627563
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ea80

Система стабилизации и управления вооружением боевой машины

Изобретение относится к системам стабилизации и управления вооружением боевых машин. Система дополнительно содержит, с соответствующими связями, задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по горизонтальной наводке...
Тип: Изобретение
Номер охранного документа: 0002628038
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ed39

Гидравлическая система мини-погрузчика

Гидравлическая система предназначена для многофункциональных мини-погрузчиков. Система включает соединенные гидролиниями бак, основной насос, распределитель управления рабочим оборудованием и рабочее оборудование, при этом в нее введен шестеренный насос, соединенный гидролинией с блоком...
Тип: Изобретение
Номер охранного документа: 0002628685
Дата охранного документа: 21.08.2017
19.01.2018
№218.016.00e8

Боевой модуль с дистанционным управлением

Боевой модуль с дистанционным управлением содержит опорно-поворотное устройство (ОПУ), установленное на крышу транспортного средства, компьютер, пульт управления, второй медиаконвертер Ethernet, блок распределения питания, источник питания, расположенные внутри транспортного средства. ОПУ...
Тип: Изобретение
Номер охранного документа: 0002629688
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0119

Стабилизатор вооружения дистанционно управляемого боевого модуля

Изобретение относится к области вооружения и военной техники, в частности к стабилизаторам вооружения дистанционного управления боевыми модулями (БМ). Стабилизатор вооружения дистанционно управляемого боевого модуля дополнительно содержит, связанные между собой, задающее устройство стабилизации...
Тип: Изобретение
Номер охранного документа: 0002629732
Дата охранного документа: 31.08.2017
29.05.2018
№218.016.5516

Датчик положения

Изобретение относится к области военной техники, в частности к датчикам положения (ДП) установленного оборудования, в том числе вооружения объектов типа БМП, БМД, БТР, танков и другой военной техники, такой как подъемно-мачтовые устройства, опорно-поворотные устройства, а также систем...
Тип: Изобретение
Номер охранного документа: 0002654371
Дата охранного документа: 17.05.2018
11.06.2018
№218.016.6088

Погрузочно-разгрузочное устройство транспортабельного модуля-контейнера

Изобретение относится к области подъемных устройств и может быть использовано для подъема транспортабельных модулей-контейнеров на шасси транспортных средств и опускания их на площадку хранения. Погрузочно-разгрузочное устройство транспортабельного модуля-контейнера содержит грузоподъемные...
Тип: Изобретение
Номер охранного документа: 0002657231
Дата охранного документа: 08.06.2018
29.01.2019
№219.016.b4f9

Поворотный механизм башни

Изобретение относится к транспортному машиностроению. Механизм поворота башни содержит редуктор, имеющий связанную с зубчатым венцом погона кинематическую цепь зубчатых пар шестерен, выполненную по двухпоточной схеме с силовым зацеплением двух потоков с зубчатым венцом погона. Люфтовыбирание...
Тип: Изобретение
Номер охранного документа: 0002678397
Дата охранного документа: 28.01.2019
01.03.2019
№219.016.cbf9

Схема управления силовым ключом на мдп-транзисторе

Изобретение относится к импульсной технике и может быть использовано в электронных ключах, преимущественно на основе полевых транзисторов и биполярных транзисторов с изолированным затвором. Технический результат: расширение функциональных возможностей и повышение надежности устройства....
Тип: Изобретение
Номер охранного документа: 0002384940
Дата охранного документа: 20.03.2010
01.03.2019
№219.016.cc69

Устройство управления двигателем постоянного тока

Устройство относится к электротехнике и может быть использовано для управления двигателем постоянного тока, преимущественно при питании от низковольтного источника. Технический результат заключается в повышении выходной мощности и максимального момента двигателя, расширении функциональных...
Тип: Изобретение
Номер охранного документа: 0002375810
Дата охранного документа: 10.12.2009
Показаны записи 21-30 из 34.
26.08.2017
№217.015.e8fe

Система стабилизации линии визирования

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного...
Тип: Изобретение
Номер охранного документа: 0002627563
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ea80

Система стабилизации и управления вооружением боевой машины

Изобретение относится к системам стабилизации и управления вооружением боевых машин. Система дополнительно содержит, с соответствующими связями, задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по горизонтальной наводке...
Тип: Изобретение
Номер охранного документа: 0002628038
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ed39

Гидравлическая система мини-погрузчика

Гидравлическая система предназначена для многофункциональных мини-погрузчиков. Система включает соединенные гидролиниями бак, основной насос, распределитель управления рабочим оборудованием и рабочее оборудование, при этом в нее введен шестеренный насос, соединенный гидролинией с блоком...
Тип: Изобретение
Номер охранного документа: 0002628685
Дата охранного документа: 21.08.2017
19.01.2018
№218.016.00e8

Боевой модуль с дистанционным управлением

Боевой модуль с дистанционным управлением содержит опорно-поворотное устройство (ОПУ), установленное на крышу транспортного средства, компьютер, пульт управления, второй медиаконвертер Ethernet, блок распределения питания, источник питания, расположенные внутри транспортного средства. ОПУ...
Тип: Изобретение
Номер охранного документа: 0002629688
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0119

Стабилизатор вооружения дистанционно управляемого боевого модуля

Изобретение относится к области вооружения и военной техники, в частности к стабилизаторам вооружения дистанционного управления боевыми модулями (БМ). Стабилизатор вооружения дистанционно управляемого боевого модуля дополнительно содержит, связанные между собой, задающее устройство стабилизации...
Тип: Изобретение
Номер охранного документа: 0002629732
Дата охранного документа: 31.08.2017
29.05.2018
№218.016.5516

Датчик положения

Изобретение относится к области военной техники, в частности к датчикам положения (ДП) установленного оборудования, в том числе вооружения объектов типа БМП, БМД, БТР, танков и другой военной техники, такой как подъемно-мачтовые устройства, опорно-поворотные устройства, а также систем...
Тип: Изобретение
Номер охранного документа: 0002654371
Дата охранного документа: 17.05.2018
11.06.2018
№218.016.6088

Погрузочно-разгрузочное устройство транспортабельного модуля-контейнера

Изобретение относится к области подъемных устройств и может быть использовано для подъема транспортабельных модулей-контейнеров на шасси транспортных средств и опускания их на площадку хранения. Погрузочно-разгрузочное устройство транспортабельного модуля-контейнера содержит грузоподъемные...
Тип: Изобретение
Номер охранного документа: 0002657231
Дата охранного документа: 08.06.2018
01.03.2019
№219.016.cfd1

Система дистанционного управления вооружением

Изобретение относится к военной технике, а именно к системам автоматического управления и регулирования, в частности к системе дистанционного управления вооружением. Технический результат - расширение эксплуатационных возможностей системы. Для достижения указанного технического результата в...
Тип: Изобретение
Номер охранного документа: 0002430326
Дата охранного документа: 27.09.2011
16.03.2019
№219.016.e1f2

Система наведения и стабилизации пакета направляющих боевой машины реактивной системы залпового огня

Система стабилизации и наведения пакета направляющих боевой машины реактивной системы залпового огня (ПН БМ РСЗО) содержит регулируемый насос, датчик положения его люльки, гидробак, гидродвигатель, три суммирующих усилителя, формирователь ошибки, задающее устройство, датчик давления, два...
Тип: Изобретение
Номер охранного документа: 0002681913
Дата охранного документа: 14.03.2019
17.03.2019
№219.016.e2c8

Система наведения, стабилизации и управления вооружением боевой машины

Изобретение относится к области вооружения и военной техники, в частности к системам наведения, стабилизации и управления вооружением боевых машин типа БМП, БМД, танков, БТР, БРДМ и т.п., работающих с комплексом управления вооружением этих объектов. Технический результат – расширение...
Тип: Изобретение
Номер охранного документа: 0002682086
Дата охранного документа: 14.03.2019
+ добавить свой РИД