×
25.08.2017
217.015.bee9

Результат интеллектуальной деятельности: СПОСОБ ВЕДЕНИЯ СПУТНИКОВОЙ СЪЕМКИ ПРИ ДИСТАНЦИОННОМ ЗОНДИРОВАНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам ведения спутниковой съемки. Сущность: на борту спутника синхронно выполняют целевую спутниковую съемку заданных районов и съемку полей облачности над заданными районами. Данные спутниковой съемки полей облачности обрабатывают на борту спутника и на их основе формируют оценки покрытия заданных районов облачностью с признаком принадлежности к конкретному заданному району. Сформированные оценки оперативно передают на сеть наземного комплекса приема, обработки и распространения спутниковой информации, где проводят их анализ и принятие решения о пригодности данных целевой спутниковой съемки заданных районов, а также формирование перечня пригодных данных целевой спутниковой съемки заданных районов и перечня непригодных данных целевой спутниковой съемки заданных районов. На основании полученных данных корректируют последовательность моментов передачи данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения спутниковой информации. Передают пригодные данные и стирают непригодные данные из бортового постоянного запоминающего устройства. Технический результат: повышение результативности целевой спутниковой съемки заданных районов за счет уменьшения количества передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач.

Предложение относится к области дистанционного зондирования Земли с использованием спутников и может быть использовано для контроля ледовой обстановки, границ разливов рек, лесных пожаров, состояния растительного покрова и сельскохозяйственных культур, для экологического картирования и съемки районов разрушений, а также в других прикладных задачах, решаемых по получаемым при целевой спутниковой съемке изображениям морской и земной поверхности.

Одной из основных проблем ведения целевой спутниковой съемки при дистанционном зондировании является наличие в полосе захвата аппаратуры сложно прогнозируемой атмосферной оптической помехи - облачности, которая определяет количество данных целевой спутниковой съемки морской и земной поверхности, пригодных для решения прикладных задач. Проблема прогнозирования облачности решается в сети наземного комплекса приема, обработки и распространения (НКПОР) спутниковой информации, осуществляющая прием и регистрацию заявок на планируемые периоды и районы проведения целевой спутниковой съемки морской и земной поверхности [1]. В сети НКПОР производится разработка прогноза моментов времени пролета спутника над заданными районами и прогноза отсутствия облачности над заданными районами в рассчитанные моменты времени. На основании разработанных прогнозов с учетом приоритетности решения задач целевой спутниковой съемки морской и земной поверхности выполняется выбор последовательности моментов времени и режимов ведения целевой спутниковой съемки заданных районов, а также моментов передачи данных целевой спутниковой съемки заданных районов на сеть НКПОР.

Известен способ ведения целевой спутниковой съемки при дистанционном зондировании, заключающийся в разработке вероятностных моделей распределения облачности по сезонам над заданными районами на основе многолетних данных наземных метеорологических станций и метеорологической спутниковой съемки. При этом возможно уточнение условий съемки по данным сети автоматических метеорологических станций, информация с которых должна автоматически передаваться на спутник во время его пролета над заданными районами [2].

Недостатком известного способа [2] является невозможность его реализации в районах, где отсутствует высокая плотность наземных метеорологических станций, а также малое количество получаемых данных целевой спутниковой съемки, пригодных для решения прикладных задач, поскольку вероятностная модель распределения облачности по сезонам не обладает высокой оправдываемостью.

Известен способ ведения целевой спутниковой съемки при дистанционном зондировании, заключающийся в определении планируемых периодов проведения целевой спутниковой съемки в заданных районах и разработке прогноза моментов времени пролета спутника над заданными районами. При этом выполняется разработка прогноза отсутствия облачности над заданными районами в моменты пролета над ними спутника и выбор последовательности моментов времени и режимов ведения целевой спутниковой съемки с учетом полученного метеорологического прогноза [3].

Недостатком известного способа [3] является небольшое количество регистрируемых данных, пригодных для решения прикладных задач. Согласно проведенным расчетам по этому способу удается получать примерно 32% снимков высокого разрешения с малым покрытием облачностью [4]. Невысокая результативность этого способа [3] объясняется тем, что в качестве прогноза используются климатические данные об облачности или долгосрочные прогнозы отсутствия облачности над заданными районами (за 6-8 суток до момента съемки), которые имеют сравнительно низкую оправдываемость.

Известен способ краткосрочного прогнозирования облачности и вида небосвода над местностью наблюдения [5], основанный на создании метеорологической системы человек-компьютер с обратными связями и работающей в режиме он-лайн. Способ [5] включает математическую обработку массива данных величины атмосферного давления над данной местностью с целью ее краткосрочного прогноза и занесение в компьютер начального вида небосвода в момент наблюдения (или близкого к нему). Способ [5] позволяет, основываясь на начальной картинке небосвода и на прогнозе величины атмосферного давления, в ближайшие часы прогнозировать облачность и картинки небосводов на последующее после наблюдения время. Способ [5] имеет адаптационный механизм, позволяющий корректировать прогноз, при этом используются данные атмосферного давления, запоминающее устройство, часы и компьютер, в памяти которого хранится матрица упорядоченных небосводов.

Недостатком известного способа [5] при применении его для ведения целевой спутниковой съемки является необходимость участия операторов метеорологической системы и их обязательное заблаговременное присутствие в заданных районах, что может быть достаточно сложным для реализации на удаленных и зарубежных территориях.

Наилучшими характеристиками обладает способ определения времени проведения целевой спутниковой съемки при дистанционном зондировании [1], заключающийся в регистрации планируемых периодов проведения целевой спутниковой съемки морской и земной поверхности в заданных районах, разработке прогноза моментов времени пролета спутника над заданными районами, разработке прогноза отсутствия облачности над заданными районами в моменты пролета над ними спутника и выборе последовательности моментов времени и режимов ведения целевой спутниковой съемки с учетом прогноза отсутствия облачности над заданными районами. Для каждого заданного района разрабатываются краткосрочные прогнозы отсутствия облачности на ближайшие 24 часа с учетом этих прогнозов предварительно распределяется на каких витках и в каких зонах приема спутниковой информации возможно проведение целевой спутниковой съемки заданных районов в безоблачных условиях. Полученная информация в виде предварительного плана съемок и программы с предварительными указаниями на моменты времени и режимы ведения целевой спутниковой съемки передается по радиолинии на спутник.

Способ определения времени проведения целевой спутниковой съемки при дистанционном зондировании [1] может быть выбран в качестве технического решения, наиболее близкого к заявляемому.

Особенность известного способа [1] состоит в том, что не более чем за 6 часов до каждого периода проведения предварительно запланированной целевой спутниковой съемки по информации с метеорологических спутников определяется фактическое положение поля облачности над заданными районами. С учетом фактического положения облачности вносятся уточнения в план моментов времени и районов проведения целевой спутниковой съемки при безоблачных условиях и в программу целеуказаний на моменты времени и режимы ведения целевой спутниковой съемки. В случае отсутствия существенных расхождений между краткосрочным и фактическим положением облачности на один и тот же момент времени предварительный план моментов времени и районов проведения целевой спутниковой съемки не изменяется. Передача изменений в программу целеуказаний на каждый виток, на котором возможно проведение запланированной целевой спутниковой съемки заданных районов с безоблачными условиями, осуществляется в период времени, когда спутник находится в зоне радиовидимости сети НКПОР.

Таким образом, недостаток известного способа [1] состоит в невозможности оперативного внесения уточнений в план моментов времени и районов проведения целевой спутниковой съемки, а также в программу целеуказаний на моменты времени и режимы ведения целевой спутниковой съемки при отсутствии оперативных снимков фактических полей облачности, что приводит к снижению результативности целевой спутниковой съемки заданных районов, проявляющейся в значительном количестве передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач. Это наиболее характерно при использовании российских спутников дистанционного зондирования для коммерческой съемки районов за пределами территории Российской Федерации, не обслуживаемых центрами приема информации с метеорологических спутников.

Цель настоящего предложения состоит в повышении результативности целевой спутниковой съемки заданных районов за счет уменьшения количества передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач.

Поставленная цель достигается тем, что при проведении целевой спутниковой съемки морской и земной поверхности в заданных районах с борта спутника выполняется синхронная спутниковая съемка полей облачности над заданными районами, что позволяет на борту спутника получить оценки покрытия каждого заданного района облачностью, на основании которых после передачи их по радиолинии на сеть НКПОР оценивается пригодность данных целевой спутниковой съемки заданных районов для решения прикладных задач. На предстоящие сутки в сети НКПОР для каждого заданного района в отдельности вычисляются параметры определения облачности по данным спутниковой съемки полей облачности над заданными районами, представляющие собой пороговые значения для значений яркости и яркостных температур и для отношений значений яркости и яркостных температур в спектральных каналах, выбранных из набора спектральных каналов. Набор спектральных каналов спектра электромагнитного излучения позволяет определить наличие или отсутствие облачности для каждого элемента пространственного разрешения данных спутниковой съемки полей облачности над заданными районами. Существующий отечественный [6, 7] и зарубежный опыт [8, 9] по получению оценок наличия облачности над заданными районами на основе данных, зарегистрированных при многоспектральной спутниковой съемке полей облачности, позволяет определить необходимый набор спектральных каналов съемки и требуемые процедуры обработки. Кроме того, на предстоящие сутки по радиолинии на спутник совместно с рабочей программой ведения целевой спутниковой съемки заданных районов передаются параметры определения облачности над заданными районами, например пороговые значения для значений яркости и яркостных температур, для разностей яркостных температур и отношений значений яркости в спектральных каналах, для которых оценивается достоверность наличия облачности в элементах пространственного разрешения и общая достоверность наличия облачности. Согласно рабочей программе ведения целевой спутниковой съемки заданных районов с борта спутника синхронно выполняется целевая спутниковая съемка заданных районов и спутниковая съемка полей облачности над заданными районами. Пространственное разрешение при ведении спутниковой съемки полей облачности над заданными районами определяется исходя из особенностей прикладных задач, решаемых посредством целевой спутниковой съемки заданных районов с борта спутника. Спутниковая съемка полей облачности над заданными районами выполняется таким образом, чтобы зарегистрированные в спектральных каналах изображения по границам соответствовали изображениям, зарегистрированным при целевой спутниковой съемке заданных районов. Данные спутниковой съемки полей облачности над заданными районами в соответствии с параметрами определения облачности подвергаются обработке, состоящей в получении массивов оценок наличия облачности над заданными районами для каждого элемента пространственного разрешения. По массивам оценок наличия облачности над заданными районами на борту спутника формируются общие оценки покрытия заданных районов облачностью. Для каждого заданного района на борту спутника формируется отдельная оценка покрытия заданного района облачностью, например, характеризующая отношение площади покрытия облачностью к общей площади заданного района и представляющая собой одно число, например, в баллах от 1 до 10. Полученные оценки покрытия заданных районов облачностью с признаком принадлежности к конкретному из заданных районов с борта спутника оперативно передаются по радиолинии на сеть НКПОР при нахождении в зоне радиовидимости сети НКПОР или через спутник-ретранслятор. В сети НКПОР выполняется анализ оценок покрытия заданных районов облачностью и принимается решение о пригодности данных целевой спутниковой съемки заданных районов, хранимых в бортовом постоянном запоминающем устройстве спутника, к использованию в соответствии с решаемыми прикладными задачами. Результатом принятия решения о пригодности данных целевой спутниковой съемки заданных районов являются перечень пригодных данных целевой спутниковой съемки заданных районов для передачи из бортового постоянного запоминающего устройства по радиолинии на сеть НКПОР и перечень непригодных данных целевой спутниковой съемки заданных районов для удаления из бортового постоянного запоминающего устройства, согласно которым производится коррекция последовательности моментов передачи данных целевой спутниковой съемки по радиолинии на сеть НКПОР, а также согласно команде о передаче пригодных данных целевой спутниковой съемки на сеть НКПОР и стирании непригодных данных целевой спутниковой съемки из бортового постоянного запоминающего устройства, передаваемой по радиолинии на спутник, выполняется передача пригодных данных целевой спутниковой съемки заданных районов из бортового постоянного запоминающего устройства по радиолинии на сеть НКПОР и удаление из бортового постоянного запоминающего устройства непригодных данных целевой спутниковой съемки. Таким образом, заявляемый способ позволяет повысить результативность целевой спутниковой съемки заданных районов за счет уменьшения количества передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач.

Предлагаемый способ реализуется следующим образом. На основании заявок от потребителей на планируемые периоды и районы проведения целевой спутниковой съемки в заданных районах в сети НКПОР разрабатываются прогнозы моментов времени пролета спутника над заданными районами и отсутствия облачности над заданными районами в моменты пролета над ними спутника, а также определяется приоритетность решаемых задач целевой спутниковой съемки. С учетом прогнозов моментов времени пролета спутника над заданными районами и отсутствия облачности над заданными районами в моменты пролета над ними спутника, приоритетности решаемых задач целевой спутниковой съемки на предстоящие сутки в сети НКПОР определяется последовательность моментов времени и режимов ведения целевой спутниковой съемки заданных районов, а также последовательность моментов передачи данных целевой спутниковой съемки заданных районов на сеть НКПОР. Кроме того, с учетом последовательности моментов времени и режимов ведения целевой спутниковой съемки заданных районов на предстоящие сутки в сети НКПОР для каждого заданного района в отдельности вычисляются параметры определения облачности по данным спутниковой съемки полей облачности над заданными районами, представляющие собой пороговые значения для значений яркости и яркостных температур и для отношений значений яркости и яркостных температур в спектральных каналах, выбранных из набора спектральных каналов. Набор спектральных каналов спектра электромагнитного излучения позволяет определить наличие или отсутствие облачности для каждого элемента пространственного разрешения данных спутниковой съемки полей облачности над заданными районами. В частности, набор спектральных каналов представляет собой N спектральных каналов видимой и инфракрасной областей спектра электромагнитного излучения, задаваемых таким образом, чтобы обеспечить определение разных типов облачности на фоне различной подстилающей поверхности при типичных условиях ведения целевой спутниковой съемки заданных районов. Например, в качестве N спектральных каналов ведения спутниковой съемки полей облачности над заданными районами используется набор из одиннадцати спектральных каналов с центрами, имеющими значения: 0.413 мкм, 0.65 мкм, 0.86 мкм, 1.38 мкм, 1.6 мкм, 3.9 мкм, 6.7 мкм, 8.6 мкм, 11 мкм, 12 мкм, 13.9 мкм. Спектральные каналы 6.7 мкм, 11 мкм, 13.9 мкм используются для определения облачности по яркостной температуре; спектральные каналы 3.9 мкм, 8.6 мкм, 11 мкм, 12 мкм - по разности яркостных температур: 8.6 мкм и 11 мкм, 11 мкм и 12 мкм, 3.9 мкм и 11 мкм, 3.9 мкм и 12 мкм; спектральные каналы 0.413 мкм, 0.65 мкм, 0.86 мкм, 1.38 мкм 1.6 мкм - по значениям яркости в спектральных каналах 0.413 мкм, 0.65 мкм, 0.86 мкм, 1.38 мкм, 1.6 мкм и отношению значений яркости в спектральных каналах 0.86 мкм и 0.65 мкм. Для рассмотренного набора из одиннадцати спектральных каналов вычисляются параметры определения облачности, представляющие собой пороговые значения для значений яркости и яркостных температур в спектральных каналах 0.413 мкм, 0.65 мкм, 0.86 мкм, 1.38 мкм, 1.6 мкм, 6.7 мкм, 11 мкм, 13.9 мкм, для разностей яркостных температур 8.6 мкм и 11 мкм, 11 мкм и 12 мкм, 3.9 мкм и 11 мкм, 3.9 мкм и 12 мкм, а также для отношения значений яркости в спектральных каналах 0.86 мкм и 0.65 мкм. Для результатов указанных пороговой обработки значений яркости и яркостных температур, разностей яркостных температур и отношения значений яркостей оцениваются достоверности наличия облачности для каждого элемента пространственного разрешения, по произведению которых на борту спутника оценивается общая достоверность наличия облачности. По значению общей достоверности с известным порогом принимается решение о наличии или отсутствии облачности в каждом элементе пространственного разрешения и получается массив оценок наличия облачности над заданными районами для каждого элемента пространственного разрешения, производится подсчет общего числа элементов пространственного разрешения и числа элементов пространственного разрешения с наличием облачности, по которым на борту спутника формируется общая оценка покрытия заданного района облачностью, например, характеризующая отношение площади покрытия облачностью к общей площади заданного района.

Информация о последовательности моментов времени и режимов ведения целевой спутниковой съемки заданных районов, последовательности моментов передачи данных целевой спутниковой съемки заданных районов на сеть НКПОР распространяется в сети НКПОР. Кроме того, информация о последовательности моментов времени и режимов ведения целевой спутниковой съемки заданных районов в виде рабочей программы ведения целевой спутниковой съемки заданных районов совместно с параметрами определения облачности над заданными районами передается по радиолинии на спутник.

Согласно рабочей программе ведения целевой спутниковой съемки заданных районов с борта спутника синхронно выполняется целевая спутниковая съемка заданных районов и спутниковая съемка полей облачности над заданными районами. Пространственное разрешение при ведении спутниковой съемки полей облачности над заданными районами определяется исходя из особенностей прикладных задач, решаемых посредством целевой спутниковой съемки заданных районов с борта спутника. Спутниковая съемка полей облачности с борта спутника над заданными районами выполняется таким образом, чтобы зарегистрированные в спектральных каналах изображения по границам соответствовали изображениям, зарегистрированными при целевой спутниковой съемке заданных районов. Данные целевой спутниковой съемки заданных районов записываются для хранения в бортовое постоянное запоминающее устройство. Данные спутниковой съемки полей облачности над заданными районами в соответствии с параметрами определения облачности подвергаются обработке на борту спутника, состоящей в получении массивов оценок наличия облачности над заданными районами для каждого элемента пространственного разрешения. По массивам оценок наличия облачности над заданными районами на борту спутника формируются общие оценки покрытия заданных районов облачностью. Для каждого заданного района на борту спутника формируется отдельная оценка покрытия заданного района облачностью, характеризующая отношение площади покрытия облачностью к общей площади заданного района и представляющая собой одно число, например, в баллах от 1 до 10. Полученные оценки покрытия заданных районов облачностью с признаком принадлежности к конкретному из заданных районов оперативно передаются с борта спутника по радиолинии на сеть НКПОР при нахождении в зоне радиовидимости одного из НКПОР или через спутник-ретранслятор. В сети НКПОР выполняется анализ оценок покрытия заданных районов облачностью и принимается решение о пригодности данных целевой спутниковой съемки заданных районов, хранимых в бортовом постоянном запоминающем устройстве спутника, к использованию в соответствии с решаемыми прикладными задачами. Результатом принятия решения о пригодности данных целевой спутниковой съемки заданных районов является перечень пригодных данных целевой спутниковой съемки заданных районов для передачи из бортового постоянного запоминающего устройства на сеть НКПОР и перечень непригодных данных целевой спутниковой съемки заданных районов для удаления из бортового постоянного запоминающего устройства, согласно которым производится коррекция последовательности моментов передачи данных целевой спутниковой съемки на сеть НКПОР, а также посредством передачи команды по радиолинии на спутник выполняется передача пригодных данных целевой спутниковой съемки заданных районов из бортового постоянного запоминающего устройства по радиолинии на сеть НКПОР и удаление из бортового постоянного запоминающего устройства непригодных данных целевой спутниковой съемки.

Реализация предложенного способа позволит повысить результативность целевой спутниковой съемки заданных районов за счет уменьшения количества передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач.

Источники информации:

1. Способ определения времени проведения спутниковой съемки при дистанционном зондировании: пат. 2231811 Рос. Федерация: МПК7 G01W 1/00 / Будовый В.Д., Бухаров М.В.; заявитель и патентообладатель НИЦ космической гидрометеорологии "Планета". - №2002117046/28, зяавл. 27.06.2002; опубл. 27.06.2004.

2. Аэрокосмические методы в охране природы и в лесном хозяйстве / Сухих В.И., Синицын С.Г., Апостолов Ю.С., Данюлис Е.П., Жирин В.М., Мороз П.И., Рукосуев Г.Н., Эльман Р.И. - М.: Лесная промышленность, 1979. - 288 с.

3. Будовый В.Д. Методика учета облачной обстановки при планировании применения космических средств исследования природных ресурсов Земли // Труды НПО "Планета", вып. 43. СПб.: Гидрометеоиздат, 1996, с. 19-21.

4. Будовый В.Д., Трудовой А.Ю. Зависимость эффективности измерений с ИСЗ "Ресурс-01" от учета облачности // Труды НПО "Планета", вып. 43. СПб.: Гидрометеоиздат, 1996, с. 16.

5. Способ краткосрочного прогнозирования облачности и вида небосвода над местностью наблюдения и устройство для его осуществления: пат. 2167441 Рос. Федерация: МПК7 G01W 1/02, G01W 1/10 / Политюков В.П., Политюкова Н.А.; заявитель и патентообладатель Политюков В.П., Политюкова Н.А. - №98118192/28, заявл. 05.10.1998; опубл. 20.05.2001.

6. Белова Е.И., Ершов Д.В. Предварительная обработка временных серий изображения Landsat-TM/ETM+ при создании безоблачных композитных изображений местности. Современные проблемы ДЗЗ из космоса, Т. 8, №1, 2011, с. 73-82.

7. Григорьев А.Н. Исследование топографических радиометрических искажений данных космической гиперспектральной съемки // Контенант: науч.-техн. журнал., Т. 12, №1, март 2013. - С. 50-57.

8. Ackerman S. and other Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35) v. 6.1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin - Madison, MODIS Cloud Mask Team, 2010, 121 p.

9. Heidinger A., Straka W. ABI Cloud Mask v. 3.0. Algorithm theoretical basis document. NOAA Nesdis Center for satellite applications and research, 2013, 106 p.

Способ ведения спутниковой съемки при дистанционном зондировании, заключающийся в регистрации планируемых периодов проведения целевой спутниковой съемки заданных районов, разработке на их основе приоритетности решаемых задач и прогнозов моментов времени пролета спутника над заданными районами, на основе которых разрабатывается прогноз отсутствия облачности над заданными районами в моменты пролета над ними спутника, определении на его основе совместно с приоритетностью решаемых задач последовательности моментов времени и режимов ведения целевой спутниковой съемки заданных районов в безоблачных условиях на сутки, моментов передачи данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения и представлении этой информации на сеть наземного комплекса приема, обработки и распространения, осуществляющую передачу на спутник рабочей программы ведения целевой спутниковой съемки заданных районов, выполнении на борту целевой спутниковой съемки заданных районов с записью данных этой съемки в бортовое постоянное запоминающее устройство и передачей этих данных на сеть наземного комплекса приема, обработки и распространения, отличающийся тем, что на борту спутника синхронно с выполнением целевой спутниковой съемки заданных районов выполняется спутниковая съемка полей облачности над заданными районами и обработка этих данных на борту спутника согласно параметрам определения облачности, которые заранее вычисляются в наземном комплексе приема, обработки и распространения для каждого заданного района и заранее передаются на борт спутника по радиолинии, одновременно на основании упомянутых данных формируются оценки покрытия заданных районов облачностью с признаком принадлежности к конкретному заданному району, причем оценки покрытия заданных районов облачностью оперативно передаются на сеть наземного комплекса приема, обработки и распространения, где проводится их анализ и принятие решения о пригодности данных целевой спутниковой съемки заданных районов, формирование перечня пригодных данных целевой спутниковой съемки заданных районов и перечня непригодных данных целевой спутниковой съемки заданных районов, на основе чего корректируется последовательность моментов передачи данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения с последующей передачей на борт спутника команд о передаче пригодных данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения, в соответствии с которыми производится передача пригодных данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения, и о стирании непригодных данных целевой спутниковой съемки заданных районов из бортового постоянного запоминающего устройства.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 638.
10.03.2014
№216.012.aaa9

Преобразователь постоянного напряжения в трехфазное квазисинусоидальное

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении преобразователей постоянного напряжения в трехфазное переменное при высоких требованиях к качеству выходного напряжения, к массогабаритным показателям, к КПД и надежности. Техническим...
Тип: Изобретение
Номер охранного документа: 0002509404
Дата охранного документа: 10.03.2014
27.06.2014
№216.012.d6e6

Вентиль

Изобретение относится к ручным вентилям, предназначенным для использования в пневмогидравлической системе наземного агрегата гидропитания, применяемого при проверках функционирования рулевых машин перед стартом ракеты. В корпусе вентиля размещен затвор с запрессованным уплотнителем, опирающимся...
Тип: Изобретение
Номер охранного документа: 0002520792
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6ec

Узел пары заслонка и седло регулятора расхода горячего газа

Изобретение относится к области машиностроения, а именно к регуляторам расхода горячего газа, работающим на продуктах сгорания ракетных топлив и обеспечивающим управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Узел пары заслонка и седло регулятора расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002520798
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d965

Дренажно-предохранительный клапан бака окислителя

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой...
Тип: Изобретение
Номер охранного документа: 0002521431
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dce7

Устройство для фиксации отделяемых в процессе эксплуатации частей изделия от корпуса

Изобретение относится к области машиностроения и может быть использовано при разработке изделий с разделяемыми в процессе работы элементами. Устройство содержит цилиндрический корпус, установленную в нем обойму, выполненную в виде полого цилиндра с торцовым фланцем, контактирующим с корпусом...
Тип: Изобретение
Номер охранного документа: 0002522329
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de20

Вращающийся обтекатель антенн на самолете

Изобретение относится к элементам конструкции антенн самолетов дальнего радиолокационного обнаружения. Вращающийся обтекатель антенн, выполненный в виде кессона и предназначенный для установки на фюзеляже за крылом посредством пилонов, содержит центральный узел - силовой куб, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002522650
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de91

Бак топливный космического аппарата для хранения и подачи жидких компонентов

Изобретение относится к пневмогидравлической системе подачи компонентов топлива реактивной двигательной установки космического аппарата. Топливный бак содержит герметичный корпус, выполненный из двух полусфер с входным и выходным штуцерами и элементами внешнего крепления. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002522763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e2

Лазерный целеуказатель

Изобретение относится к аппаратуре для лазерного целеуказания и дальнометрии. Лазерный целеуказатель содержит канал лазерного целеуказания, электронную аппаратуру управления мощностью (энергией) лазера канала лазерного целеуказания и канал лазерного дальнометрирования. Каналы лазерного...
Тип: Изобретение
Номер охранного документа: 0002523612
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fff2

Трехфазный инвертор напряжения с трансформаторным выходом

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов в системах как основного, так и резервного электропитания автономных объектов, где уровень напряжения первичного источника требует повышения его трансформаторным...
Тип: Изобретение
Номер охранного документа: 0002531378
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.018c

Способ повышения эффективности наведения на подводную цель корректируемого подводного снаряда противолодочного боеприпаса и устройство для его реализации

Изобретение относится военной технике и может быть использовано в противолодочных боеприпасах. Противолодочный боеприпас (ПБ) содержит корпус, систему запуска и разделения, тормозной отсек с парашютом и поплавком с невозвратным клапаном, отделяемый корректируемый подводный снаряд (КПС) с...
Тип: Изобретение
Номер охранного документа: 0002531794
Дата охранного документа: 27.10.2014
Показаны записи 31-40 из 365.
10.03.2014
№216.012.aaa9

Преобразователь постоянного напряжения в трехфазное квазисинусоидальное

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении преобразователей постоянного напряжения в трехфазное переменное при высоких требованиях к качеству выходного напряжения, к массогабаритным показателям, к КПД и надежности. Техническим...
Тип: Изобретение
Номер охранного документа: 0002509404
Дата охранного документа: 10.03.2014
27.06.2014
№216.012.d6e6

Вентиль

Изобретение относится к ручным вентилям, предназначенным для использования в пневмогидравлической системе наземного агрегата гидропитания, применяемого при проверках функционирования рулевых машин перед стартом ракеты. В корпусе вентиля размещен затвор с запрессованным уплотнителем, опирающимся...
Тип: Изобретение
Номер охранного документа: 0002520792
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d6ec

Узел пары заслонка и седло регулятора расхода горячего газа

Изобретение относится к области машиностроения, а именно к регуляторам расхода горячего газа, работающим на продуктах сгорания ракетных топлив и обеспечивающим управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Узел пары заслонка и седло регулятора расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002520798
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d965

Дренажно-предохранительный клапан бака окислителя

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой...
Тип: Изобретение
Номер охранного документа: 0002521431
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dce7

Устройство для фиксации отделяемых в процессе эксплуатации частей изделия от корпуса

Изобретение относится к области машиностроения и может быть использовано при разработке изделий с разделяемыми в процессе работы элементами. Устройство содержит цилиндрический корпус, установленную в нем обойму, выполненную в виде полого цилиндра с торцовым фланцем, контактирующим с корпусом...
Тип: Изобретение
Номер охранного документа: 0002522329
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de20

Вращающийся обтекатель антенн на самолете

Изобретение относится к элементам конструкции антенн самолетов дальнего радиолокационного обнаружения. Вращающийся обтекатель антенн, выполненный в виде кессона и предназначенный для установки на фюзеляже за крылом посредством пилонов, содержит центральный узел - силовой куб, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002522650
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de91

Бак топливный космического аппарата для хранения и подачи жидких компонентов

Изобретение относится к пневмогидравлической системе подачи компонентов топлива реактивной двигательной установки космического аппарата. Топливный бак содержит герметичный корпус, выполненный из двух полусфер с входным и выходным штуцерами и элементами внешнего крепления. Внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002522763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e2

Лазерный целеуказатель

Изобретение относится к аппаратуре для лазерного целеуказания и дальнометрии. Лазерный целеуказатель содержит канал лазерного целеуказания, электронную аппаратуру управления мощностью (энергией) лазера канала лазерного целеуказания и канал лазерного дальнометрирования. Каналы лазерного...
Тип: Изобретение
Номер охранного документа: 0002523612
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fff2

Трехфазный инвертор напряжения с трансформаторным выходом

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов в системах как основного, так и резервного электропитания автономных объектов, где уровень напряжения первичного источника требует повышения его трансформаторным...
Тип: Изобретение
Номер охранного документа: 0002531378
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00e9

Кольцевое движительное устройство

Изобретение относится к области судостроения и может быть использовано в конструкциях винтовых движителей и устройствах активного управления плавательными средствами. Кольцевое движительное устройство включает электродвигатель, кольцевую насадку и кольцевой ротор, которые образуют водопроточный...
Тип: Изобретение
Номер охранного документа: 0002531631
Дата охранного документа: 27.10.2014
+ добавить свой РИД