×
25.08.2017
217.015.bcf0

Результат интеллектуальной деятельности: СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения ядерных излучений, а именно к измерению в режиме мониторинга плотности невозмущенного потока радона с поверхности грунта. Способ мониторинга плотности невозмущенного потока радона с поверхности грунта содержит этапы, на которых выполняют регистрацию альфа-излучения продуктов распада радона, накопленных внутри установленной на поверхность грунта накопительной камеры, в корпусе которой выполнены отверстия для частичного выхода почвенного газа, при этом предварительно на месте установки накопительной камеры производят измерение плотности потока радона и торона с помощью радиометра, определяют количество импульсов от торона и альфа-излучающих дочерних продуктов его распада N, затем устанавливают накопительную камеру на поверхность грунта и производят непрерывные последовательные измерения количества импульсов с длительностью одного измерения τ от 60 до 900 с закрепленным внутри накопительной камеры сцинтилляционным альфа-детектором, чувствительная поверхность которого расположена не менее чем на 0,10 м выше поверхности грунта, определяют поправочный коэффициент K для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона, а плотность потока радона определяют из выражения: где q(t) - плотность потока радона с поверхности грунта в момент времени t, Бк м с; K - поправочный коэффициент, (Бк м с)/(имп. с); N(t) - суммарное количество зарегистрированных за длительность одного измерения τ импульсов от радона, торона и альфа-излучающих дочерних продуктов их распада в момент времени t, имп.; N - количество импульсов от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ, имп.; τ - длительность одного измерения, с. Технический результат – упрощение способа проведения мониторинга, повышение достоверности полученных результатов. 3 ил.

Изобретение относится к области измерения ядерных излучений, а именно к измерению в режиме мониторинга плотности невозмущенного потока радона с поверхности грунта, и может быть использовано для исследования внутрисуточных вариаций плотности потока радона, оценки радоноопасности территорий, плотности ионизации приземного слоя атмосферы, изучения предвестников землетрясений, процессов и механизмов газообмена между грунтом и атмосферой, литосферно-атмосферных связей.

Известен способ измерения плотности потока радона с поверхности грунта по бета- и гамма-излучению, заключающийся в регистрации бета-излучения продуктов распада радона, накопленных внутри накопительной камеры, установленной на поверхность грунта [RU 2428715 С1, МПК G01T 1/16 (2006.01), опубл. 10.09.2011]. Согласно этому способу производят измерения суммарного количества импульсов от бета- и гамма-излучения продуктов распада радона установленным внутри накопительной камеры счетчиком бета- и гамма-излучения, чувствительная поверхность которого расположена таким образом, чтобы на нее не попадало бета-излучение почвенных радионуклидов, а основание накопительной камеры закрыто диффузионным фильтром, предотвращающим попадание торона из грунта. Перед измерением камеру проветривают в течение не менее чем 900 с, затем при открытой камере проводят фоновые измерения в течение t1 не менее 300 с, камеру закрывают и в течение промежутка времени t2 от 2400 до 48000 с производят измерение количества импульсов от бета- и гамма-излучения. Плотность потока радона определяют из выражения

где q - плотность потока радона с поверхности грунта, Бк м-2 с-1;

N - измеренное суммарное количество импульсов за время t2, имп.;

- измеренное фоновое значение количества импульсов за время t1, имп.;

ε - поправочный коэффициент, имп. с-1 Бк-1;

S - площадь основания накопительной камеры, м2;

λ - постоянная распада радона, c-1.

t1 - время измерения фона, с;

t2 - время накопления радона, с.

Процесс измерений усложнен из-за того, что приходится открывать и закрывать накопительную камеру, периодически меняя фильтр в ее основании, что приводит к изменению условий измерения. Этим способом измеряют плотность возмущенного потока радона, то есть измеряют заниженное значение по сравнению с истинным значением плотности невозмущенного потока. Таким образом, все это приводит к увеличению суммарной неопределенности результата измерения.

Известен способ измерения плотности невозмущенного потока радона с поверхности грунта [Stieff L.R., Kotrappa P., Bigu J. Passive E-PERM® Radon Flux Monitors For Measuring Undisturbed Radon Flux From The Ground // International Radon Symposium. - Fletcher, North Carolina, 1996. - P. II-1.1 - II-1.6.], выбранный в качестве прототипа, заключающийся в том, что накопительную камеру, в корпусе которой выполнены несколько небольших отверстий для частичного выхода почвенного газа, а внутри расположен предварительно заряженный электретный детектор (тефлоновый диск), устанавливают на поверхность грунта, вдавливая края основания камеры до ограничительного кольца, на период от нескольких часов до месяцев. Почвенный радон поступает внутрь накопительной камеры через диффузионный фильтр, задерживающий торон, установленный в основании накопительной камеры. Внутри камеры радон распадается, происходит накопление продуктов распада и ионизация воздуха. Ионизация воздуха внутри камеры приводит к понижению поверхностного заряда электрета. После экспонирования, через 8 часов, извлекают электретный детектор и измеряют падение напряжения за счет радона стандартным измерителем. Скорость разрядки электретного детектора пропорциональна плотности потока радона.

Радон из накопительной камеры через отверстия в ее корпусе частично поступает во внешнюю атмосферу и внутри накопительной камеры устанавливается полуравновесная концентрация радона, которая изменяется со временем в зависимости от изменения плотности потока радона. Такая накопительная камера позволяет измерять плотность невозмущенного потока радона с поверхности грунта. Накопительную камеру предварительно калибруют для установления коэффициента переводящего показания измерителя в единицы плотности потока радона.

Недостатки способа-прототипа:

- большая длительность одного измерения, которая зависит от толщины тефлонового диска и составляет от 2 суток до 12 месяцев, что не позволяет проводить исследование внутрисуточных вариаций величины плотности потока радона;

- невозможность использования для мониторинга, т.е. проведения непрерывных последовательных измерений без участия оператора;

- необходимость периодически менять диффузионный фильтр в основании накопительной камеры, что приводит к изменению условий измерения.

Задачей изобретения является разработка способа мониторинга плотности невозмущенного потока радона с поверхности грунта.

Поставленная задача решена за счет того, что способ мониторинга плотности невозмущенного потока радона с поверхности грунта, так же как в прототипе, заключается в регистрации альфа-излучения продуктов распада радона, накопленных внутри установленной на поверхность грунта накопительной камеры, в корпусе которой выполнены отверстия для частичного выхода почвенного газа.

Согласно изобретению, предварительно, на месте установки накопительной камеры производят измерение плотности потока радона и торона с помощью радиометра, определяют количество импульсов от торона и альфа-излучающих дочерних продуктов его распада NTn. Затем устанавливают накопительную камеру на поверхность грунта и производят непрерывные последовательные измерения количества импульсов с длительностью одного измерения τ от 60 до 900 с, закрепленным внутри накопительной камеры сцинтилляционным альфа-детектором, чувствительная поверхность которого расположена не менее чем на 0,10 м выше поверхности грунта. Определяют поправочный коэффициент KRn для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона. Плотность потока радона определяют из выражения:

где qRn(t) - плотность потока радона с поверхности грунта в момент времени t, Бк м-2 с-1;

KRn - поправочный коэффициент, (Бк м-2 с-1)/(имп. с-1);

NRn+Tn(t) _ суммарное количество зарегистрированных за длительность одного измерения τ импульсов от радона, торона и альфа-излучающих дочерних продуктов их распада в момент времени t, имп.;

NTn - количество импульсов от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ, имп.;

τ - длительность одного измерения, с.

Известно [Яковлева B.C. Моделирование влияния состояния атмосферы и литосферы на динамику плотности потока радона и торона с поверхности земли // Известия ТПУ. 2010, Т. 317, №2, С. 162-166], что плотность потока торона с поверхности грунта (фиг. 1) почти не изменяется при изменении скорости адвекции (не более 2,6% в широком диапазоне значений 0<υ<10-5 м/с). Поэтому в выражении (2) величина NTn является постоянной для конкретного места мониторинга и не зависит от времени.

Выбор длительности одного измерения τ от 60 до 900 с зависит от технических характеристик выбранного альфа-детектора, а именно эффективности его регистрации, а также от объемной активности радона внутри накопительной камеры, и определяется требованием к неопределенности результата измерения. Ограничение на расстояние чувствительной поверхности детектора от поверхности грунта, равное 0,10 м, позволяет избавиться от "фона", который может быть обусловлен регистрацией альфа-частиц, образующихся при распаде радионуклидов, содержащихся в грунте.

В предлагаемом способе, количество и размер отверстий выбирают исходя из условия, что скорость счета импульсов внутри накопительной камеры должна быть не менее чем в 10 раз выше, чем скорость счета импульсов в открытой атмосфере при том же расстоянии чувствительной поверхности сцинтилляционного альфа-детектора от поверхности грунта. Это позволяет снизить статистическую погрешность (среднее квадратическое отклонение) результата измерений.

Таким образом, предложенный способ мониторинга плотности невозмущенного потока радона с поверхности грунта является простым и достоверным.

На фиг. 1 представлены: сплошной кривой - зависимость плотности потока торона (ППТ) с поверхности грунта от скорости адвекции почвенных газов; штрих-пунктирной кривой - зависимость плотности потока радона (ППР) с поверхности грунта от скорости адвекции почвенных газов.

На фиг. 2 показана блок-схема устройства для мониторинга плотности невозмущенного потока радона с поверхности грунта.

На фиг. 3 представлены результаты измерения плотности потока радона с поверхности грунта.

Для осуществления предлагаемого способа использовали устройство для мониторинга плотности невозмущенного потока радона с поверхности грунта (фиг. 2), содержащее накопительную камеру 1, на верхней поверхности которой выполнено шесть отверстий 2. В верхней части накопительной камеры 1 закреплен сцинтилляционный альфа-детектор 3, чувствительная поверхность которого расположена на 0,10 м выше поверхности грунта. Сцинтилляционный альфа-детектор 3 соединен с блоком усиления сигнала 4 (БУС), к которому подключен счетчик 5 (С), связанный с компьютером 6 (ЭВМ).

Накопительная камера 1 объемом 4,71 л, высотой 0,15 м и площадью основания S=3,14⋅10-2 м2 и с ограничительным кольцом изготовлена из непроницаемого для радона материала – поливинилхлорида. Диаметр отверстий 2 составляет 4 мм.

В качестве сцинтилляционного альфа-детектора 3, блока усиления сигнала 4 (БУС) и счетчика 5 (С) использован блок детектирования БДПА-01 (ООО НТЦ «РАДЭК»), работающий под управлением заводского программного обеспечения на компьютере 6 (ЭВМ).

Для мониторинга плотности невозмущенного потока радона с поверхности грунта выбрали площадку, расположенную около института мониторинга климатических и экологических систем г. Томска.

Предварительно, перед установкой накопительной камеры 1 на поверхности грунта произвели измерения плотности потоков радона и торона с помощью радиометра RTM 2200 (SARAD GmbH, Германия). Измеренные значения плотности потоков радона и торона составили: qRn(t)=15,82 мБк м-2 с-1 и qTn(t)=850 мБк м-2 с-1.

Затем, на месте установки устройства для мониторинга плотности невозмущенного потока родона с поверхности грунта определили количество импульсов NTn от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ=600 с с помощью спектрометра СЭА-13П1 (ЗАО НПЦ «АСПЕКТ»), в котором использован полупроводниковый альфа-детектор типа D30 (ООО «СНИИП-Плюс»). NTn составило: NTn=7,80 имп.

После этого на грунт установили накопительную камеру 1 таким образом, чтобы чувствительная поверхность сцинтилляционного альфа-детектора 3 была расположена на 0,10 м выше поверхности грунта, при этом края накопительной камеры 1 вдавливали в грунт до ограничительного кольца. Через отверстия 2 радон частично поступал во внешнюю атмосферу, поэтому внутри накопительной камеры 1 в течение мониторинга сохранялась полуравновесная концентрация радона.

Альфа-частица, попадая в слой сцинтиллятора ZnS(Ag) сцинтилляционного альфа-детектора 3, вызывала появление вспышек света, которые в свою очередь, провзаимодействовав с материалом фотокатода этого детектора 3, выбивали из него электроны, которые «умножались» в результате вторичной эмиссии на динодах, в итоге на эквивалентном нагрузочном сопротивлении цепи анода возникал импульс напряжения. Далее сигнал поступал на блок усиления сигнала 4 (БУС), с выхода которого поступал на вход счетчика 5 (С) и передавался в компьютер 6 (ЭВМ).

Таким образом, производили измерение скорости счета импульсов внутри накопительной камеры 1 при длительности одного измерения τ 600 с, удостоверившись, что скорость счета импульсов внутри накопительной камеры 1 удовлетворяет условию, что она должна быть не менее чем в 10 раз выше, чем скорость счета импульсов в открытой атмосфере при том же расстоянии чувствительной поверхности сцинтилляционного альфа-детектора 3 от поверхности грунта.

Измеренное за τ=600 с суммарное количество импульсов NRn+Tn от радона, торона и альфа-излучающих дочерних продуктов их распада составило 48,60 имп. Скорость счета импульсов внутри накопительной камеры 1 составила 48,60 имп./600 с=0,081 имп./с, что в 40,5 раз выше скорости счета импульсов в открытой атмосфере, которая составила 0,002 имп./с.

Определили поправочный коэффициент KRn для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона из выражения 1, который составил

Внесли KRn в программу компьютера 6 (ЭВМ) для расчета плотности потока радона.

Установили начальное время отсчета 00:00:00 02.09.2011, установили длительность одного измерения 600 с и при помощи компьютера 6 (ЭВМ) по выражению (1) провели мониторинг плотности невозмущенного потока радона с поверхности грунта. Первое измеренное значение qRn составило 14,20 мБк м-2 с-1. Остальные значения результатов мониторинга ППР приведены на фиг. 3.

Аналогичным образом провели измерения при длительности одного измерения τ=60 с и τ=900 с и получили первые измеренные значения qRn=13,90 мБк м-2 с-1 и qRn=14,24 мБк м-2 с-1 соответственно.


СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 76.
20.06.2018
№218.016.650a

Способ измерения переменного тока в шине электроустановки

Изобретение относится к электротехнике и может быть использовано для измерения переменного тока в шине электроустановки. Способ измерения переменного тока в шине электроустановки, при котором отключают электроустановку. Шину электроустановки подключают к источнику переменного тока. Затем на...
Тип: Изобретение
Номер охранного документа: 0002658078
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.66fc

Времяпролетный спектрометр ионов плазмы

Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения зарядового и массового состава ионов плазмы. Времяпролетный спектрометр содержит вакуумную камеру (1), в которой последовательно расположены труба дрейфа (2) и детектор ионов (7), на входном...
Тип: Изобретение
Номер охранного документа: 0002658293
Дата охранного документа: 20.06.2018
10.07.2018
№218.016.6ef7

Вольтамперометрический способ определения пероксида водорода в водных растворах на графитовом электроде, модифицированном коллоидными частицами серебра

Изобретение относится к аналитической химии, а именно к способу определения содержания пероксида водорода в водных растворах методом циклической вольтамперометрии с использованием трехэлектродной ячейки, где в качестве индикаторного электрода используют графитовый электрод, модифицированный...
Тип: Изобретение
Номер охранного документа: 0002660749
Дата охранного документа: 09.07.2018
09.08.2018
№218.016.78e0

Устройство стабилизации частоты вращения однофазного коллекторного двигателя

Изобретение относится к электротехнике, а именно к устройствам для регулирования числа оборотов электродвигателей и может быть использовано в бытовых и промышленных инструментах, приборах специального назначения. Устройство стабилизации частоты вращения однофазного коллекторного двигателя...
Тип: Изобретение
Номер охранного документа: 0002663239
Дата охранного документа: 03.08.2018
26.10.2018
№218.016.967c

Устройство для крепления герконов в ячейках комплектных распределительных устройств

Изобретение относится к электротехнике, может быть использовано для токовой защиты. Техническим результатом является возможность перемещения герконов относительно двух направлений и их защита от внешних воздействий. Технический результат достигается тем, что конструкция для крепления герконов в...
Тип: Изобретение
Номер охранного документа: 0002670720
Дата охранного документа: 24.10.2018
08.03.2019
№219.016.d2f7

Устройство для аттестации электроискровых дефектоскопов изоляции кабельных изделий

Изобретение относится к контрольно-измерительной технике и может быть использовано при аттестации электроискровых дефектоскопов, используемых для контроля изоляции кабельных изделий. Сущность: устройство содержит задающий генератор, который подключен к затвору и истоку полевого транзистора, к...
Тип: Изобретение
Номер охранного документа: 0002681434
Дата охранного документа: 06.03.2019
27.04.2019
№219.017.3c3b

Установка плазмохимического синтеза наноразмерных порошков и используемый в ней циклон

Изобретение относится к оборудованию плазмохимического синтеза ультрадисперсных порошков, неорганических соединений и композиций, в частности к установке плазмохимического синтеза наноразмерных порошков и шнековому циклону, используемому в ней. Установка содержит реактор, корпус которого...
Тип: Изобретение
Номер охранного документа: 0002686150
Дата охранного документа: 24.04.2019
03.07.2019
№219.017.a3db

Трёхосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники и может быть использовано для одновременного измерения линейного ускорений вдоль трех взаимно перпендикулярных осей. Акселерометр содержит подложку, неподвижные анкерные блоки, внешнюю прямоугольную раму, расположенную с зазором...
Тип: Изобретение
Номер охранного документа: 0002693010
Дата охранного документа: 01.07.2019
03.07.2019
№219.017.a461

Двухосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники, в частности к приборам для измерения линейного ускорения. Акселерометр содержит подложку из диэлектрического материала, анкерные блоки, неподвижно закрепленные на подложке, инерционную массу, Ω-образные упругие элементы, образующие подвес...
Тип: Изобретение
Номер охранного документа: 0002693030
Дата охранного документа: 01.07.2019
Показаны записи 51-53 из 53.
31.05.2019
№219.017.7019

Способ определения интенсивности и количества дождевых осадков

Изобретение относится к области метеорологии и может быть использовано для определения интенсивности и количества дождевых осадков в приземном слое атмосферы. Сущность: в период выпадения дождевых осадков производят непрерывные измерения плотности потока бета-излучения на некоторой высоте от...
Тип: Изобретение
Номер охранного документа: 0002689839
Дата охранного документа: 29.05.2019
11.07.2019
№219.017.b2c9

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: измеряют плотность потока бета-излучения над снежным покровом в период перед началом таяния снега в дневное время суток не менее чем через 3,5 часа после выпадения...
Тип: Изобретение
Номер охранного документа: 0002694080
Дата охранного документа: 09.07.2019
31.07.2019
№219.017.ba41

Способ определения влагозапаса в снежном покрове

Изобретение относится к области метеорологии и может быть использовано для определения влагозапаса снежного покрова. Сущность: проводят три измерения мощности дозы гамма-излучения в приземной атмосфере. Первое измерение производят до начала установления снежного покрова, второе - при толщине...
Тип: Изобретение
Номер охранного документа: 0002695949
Дата охранного документа: 29.07.2019
+ добавить свой РИД