×
25.08.2017
217.015.bc58

Результат интеллектуальной деятельности: Способ разработки плотных карбонатных коллекторов

Вид РИД

Изобретение

№ охранного документа
0002616016
Дата охранного документа
12.04.2017
Аннотация: Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке мощных плотных карбонатных нефтяных коллекторов с применением многостадийного гидравлического разрыва пласта (МГРП). Способ включает бурение горизонтальных скважин, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий, проведение МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин. Согласно изобретению выбирают нефтенасыщенный коллектор со средней толщиной H≥50 м и средней абсолютной проницаемостью не более 2 мД, коллектор разбуривают параллельными горизонтальными скважинами, горизонтальные стволы которых направлены перпендикулярно вектору главного максимального напряжения коллектора. Горизонтальные стволы размещают по вертикали в три ряда на равном расстоянии друг от друга h = (0,25-0,45)·Н. Горизонтальные стволы среднего ряда располагают в плане между горизонтальными стволами верхнего и нижнего рядов на расстоянии x = (1-5)·h по горизонтали. Длину каждого горизонтального ствола выполняют равной l ≥ 8·h. В скважинах верхнего ряда вдоль по горизонтальному стволу перфорируют нижнюю половину окружности эксплуатационной колонны и цементного камня, в скважинах нижнего ряда – верхнюю, в скважинах среднего ряда горизонтальные стволы перфорируют по всей площади. Во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м. Причем в плане местоположение каждой ступени МГРП в соседних скважинах выполняют в шахматном порядке. Скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей собой разветвленные полости, во-вторых, полудлиной трещин a = (0,5-1,0)·х и полувысотой трещин с = (0,5-1,0)·h. После МГРП скважины верхнего и нижнего рядов - добывающие скважины - осваивают и пускают в добычу. При каждом снижении дебита нефти добывающих скважин ниже экономически рентабельного значения данные скважины останавливают, в скважины среднего ряда - нагнетательные скважины - закачивают газ до тех пор, пока давление закачки не вырастет как минимум в три раза, после чего остановленные добывающие скважины пускают в работу. Технический результат заключается в повышении нефтеотдачи мощных плотных карбонатных нефтяных коллекторов. 3 ил.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке мощных плотных карбонатных нефтяных коллекторов с применением многостадийного гидравлического разрыва пласта (МГРП).

Известен способ гидроразрыва пласта в горизонтальном стволе скважины, включающий бурение скважины, цементирование горизонтального ствола скважины, перфорацию и формирование трещин с помощью гидроразрыва пласта в горизонтальном стволе скважины последовательно, начиная с конца, дальнего от оси вертикального ствола скважины, сообщающих горизонтальный ствол скважины с продуктивным пластом, при этом при проведении очередного гидравлического разрыва каждый перфорированный участок, через который производят гидроразрыв пласта, изолируют от остальной части колонны пакерами. Согласно изобретению, бурение горизонтального ствола скважины осуществляют в нефтенасыщенной части продуктивного пласта с цементированием кольцевого пространства между обсадной колонной и горной породой горизонтального ствола скважины, а перфорацию, азимутально сориентированную интервалами, производят с помощью гидромеханического щелевого перфоратора за одну спускоподъемную операцию, после чего спускают пакеры, отсекая каждый интервал, равный длине сформировавшейся щели, от остальной части колонны, а гидроразрыв пласта в горизонтальной части ствола скважины производят последовательно, начиная с дальнего от оси вертикального ствола скважины перфорированного участка горизонтального ствола скважины, причем гидромеханическую щелевую перфорацию выполняют двухстороннюю по формированию щелей, которые расположены относительно друг друга на 180° в вертикальной плоскости напротив друг друга, относительно оси горизонтального ствола скважины в одном интервале, либо выполняют одностороннюю гидромеханическую щелевую перфорацию с поворотом на 180° в вертикальной плоскости относительно оси горизонтального ствола скважины, поочередно через каждый последующий интервал - в шахматном порядке, равный длине сформированной щели, либо при малой толщине продуктивного пласта и при наличии активной подошвенной воды производят одностороннюю гидромеханическую щелевую перфорацию в направлении кровли пласта. Дополнительно проводят водоизоляционные работы на каждом из интервалов в отдельности через трещину разрыва (патент РФ №2401942, кл. Е21В 43/26, опубл. 20.10 2010).

Недостатком известного способа является неконтролируемое развитие трещины в высоту, что при последующей эксплуатации скважины приводит к ее быстрому обводнению. Разработка нефтяных залежей таким способом характеризуется невысокой нефтеотдачей.

Наиболее близким по технической сущности к предлагаемому способу является способ поинтервального гидравлического разрыва карбонатного пласта в горизонтальном стволе скважины с подошвенной водой, включающий бурение горизонтального ствола скважины в продуктивном пласте с цементированием кольцевого пространства между обсадной колонной и горной породой, спуск в горизонтальный ствол скважины на колонне труб перфоратора и выполнение перфорационных отверстий в горизонтальном стволе скважины, направленных азимутально вверх, спуск колонны труб с пакером в скважину, посадку пакера, закачку по колонне труб жидкости разрыва и формирование трещин гидравлического разрыва пласта в горизонтальном стволе скважины. В известном способе, горизонтальный ствол скважины в продуктивном пласте бурят параллельно направлению максимального напряжения горных пород, затем в горизонтальный ствол скважины на колонне гибких труб - ГТ - спускают перфоратор и выполняют перфорационные отверстия в горизонтальном стволе скважины в один ряд, извлекают колонну ГТ с перфоратором из скважины, демонтируют перфоратор, после чего оснащают снизу колонну ГТ надувным пакером, спускают колонну ГТ до забоя осевым перемещением колонны ГТ от устья к забою на расстояние 50 м со скоростью 0,5 м/мин и одновременной закачкой вязкого геля с плотностью, большей плотности воды, в объеме, обеспечивающем заполнение кислотным вязкоупругим составом нижней части сечения горизонтального ствола скважины на 2/3 диаметра горизонтального ствола, сажают надувной пакер, производят ГРП закачкой загущенного кислотного состава с последующим заполнением гелированной жидкостью с деструктором перфорационных отверстий и верхней части сечения горизонтального ствола скважины на 1/3 диаметра горизонтального ствола, производят распакеровку надувного пакера, далее производят ГРП в оставшейся части горизонтального ствола, для этого вышеописанные операции повторяют, начиная с осевого перемещения колонны ГТ от устья к забою до заполнения обработанного интервала гелированной жидкостью с деструктором, по окончании выполнения поинтервального ГРП производят освоение скважины свабированием, при этом вязкоупругий гель разжижается при контакте с пластовыми флюидами и деблокирует дренируемые участки горизонтального ствола скважины и извлекается из скважины (патент РФ №2558058, кл. Е21В 43/27, опубл. 27.07.2015 - прототип).

Известный способ позволяет управлять направлением роста трещины, однако не учитывает расположения соседних скважин, которые могут привести к отрицательному эффекту от гидроразрыва. Также не учитывается энергетическое состояние залежи при разработке данным способом. Гидроразрыв приводит к резкому повышению дебитов, но снижает конечную нефтеотдачу.

В предложенном изобретении решается задача повышения нефтеотдачи мощных плотных карбонатных нефтяных коллекторов.

Задача решается тем, что в способе разработки плотных карбонатных коллекторов, включающем бурение горизонтальных скважин, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий, проведение многостадийного гидравлического разрыва пласта - МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин, согласно изобретению, выбирают нефтенасыщенный коллектор со средней толщиной H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, коллектор разбуривают параллельными горизонтальными скважинами, горизонтальные стволы которых направлены перпендикулярно вектору главного максимального напряжения коллектора, горизонтальные стволы размещают по вертикали в три ряда на равном расстоянии друг от друга h = (0,25-0,45)·Н, горизонтальные стволы среднего ряда располагают в плане между горизонтальными стволами верхнего и нижнего рядов на расстоянии x = (1-5)·h по горизонтали, длину каждого горизонтального ствола выполняют равной l ≥ 8·h, в скважинах верхнего ряда вдоль по горизонтальному стволу перфорируют нижнюю половину окружности эксплуатационной колонны и цементного камня, в скважинах нижнего ряда – верхнюю, в скважинах среднего ряда горизонтальные стволы перфорируют по всей площади, во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м, причем в плане местоположение каждой ступени МГРП в соседних скважинах выполняют в шахматном порядке, скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей собой разветвленные полости, во-вторых, полудлиной трещин a = (0,5-1,0)·х и полувысотой трещин с = (0,5-1,0)·h, после МГРП скважины верхнего и нижнего рядов - добывающие скважины - осваивают и пускают в добычу, при каждом снижении дебита нефти добывающих скважин ниже экономически рентабельного значения данные скважины останавливают, в скважины среднего ряда - нагнетательные скважины - закачивают газ до тех пор, пока давление закачки не вырастет как минимум в три раза, после чего остановленные добывающие скважины пускают в работу.

Сущность изобретения

Под плотными здесь понимаются неоднородные слабопроницаемые нефтенасыщенные коллекторы с проницаемостью, варьирующейся в пределах от нескольких единиц до нескольких сотен мкД (10-6 мкм2). Небольшие пропластки или зоны также могут составлять несколько единиц мД (10-3 мкм2). Примером таких коллекторов могут служить доманиковые отложения на территории Республики Татарстан.

На нефтеотдачу мощных плотных карбонатных нефтяных коллекторов существенное влияние оказывает эффективность создаваемой системы разработки. Основным объектом воздействия для повышения нефтеотдачи является скелет породы – повышение его проницаемости. Для этого широкое применение нашли технологии гидроразрыва пласта (ГРП), для карбонатных пород – кислотные гидроразрывы пласта. Однако гидроразрыв в таких коллекторах приводит к кратковременному эффекту ввиду достаточно быстрого падения пластового давления. При этом ввиду преимущественной гидрофобности породы и низкой его проницаемости закачать в нее воду для целей поддержания пластового давления достаточно сложно. Увеличение давления нагнетания приводит лишь к авто-ГРП. Таким образом, существующие технические решения не в полной мере позволяют эффективно разрабатывать указанные коллекторы. В предложенном изобретении решается задача повышения нефтеотдачи мощных плотных карбонатных нефтяных коллекторов. Задача решается следующим образом.

На фиг. 1 представлено схематическое изображение вертикального разреза участка нефтяного коллектора в фас с размещением в шахматном порядке горизонтальных стволов. На фиг. 2 приведено схематическое изображение в плане нефтяного коллектора с размещением горизонтальных скважин. На фиг. 3 представлено схематическое изображение участка нефтяного коллектора с профилем горизонтальных скважин. Обозначения: 1 – участок нефтенасыщенного коллектора, 2 – горизонтальные добывающие скважины верхнего ряда, 3 – горизонтальные добывающие скважины нижнего ряда, 4 – горизонтальные нагнетательные скважины среднего ряда, 5 – перфорационные отверстия добывающих скважин 2 верхнего ряда, 6 – перфорационные отверстия добывающих скважин 3 верхнего ряда, 7 – перфорационные отверстия нагнетательных скважин 4 среднего ряда, 8 – колонны труб, 9 – фильтры, 10 – пакеры в горизонтальных стволах между ступенями МГРП, 11 – пакеры в месте соединения колонны труб 8 с фильтром 9, H – средняя толщина коллектора, h – расстояние между горизонтальными стволами соседних скважин в вертикальной плоскости, х – расстояние между горизонтальными стволами соседних скважин в горизонтальной плоскости, l – длина горизонтальных стволов скважин 2-4, b – расстояние между ступенями МГРП, wд – трещина МГРП в добывающих скважинах 2, 3, wн – трещина МГРП в нагнетательных скважинах 4, с – полувысота трещины МГРП, a – полудлина трещины МГРП.

Способ реализуют следующим образом.

Участок 1 плотного карбонатного нефтенасыщенного коллектора, средняя абсолютная проницаемость которого составляет не более 2 мД, а средняя толщина H ≥ 50 м, разбуривают горизонтальными добывающими скважинами 2, 3 и горизонтальными нагнетательными скважинами 4 (фиг. 1, 2, 3). Горизонтальные стволы скважин 2, 3 и 4 размещают параллельно друг другу в вертикальной плоскости, причем располагают по вертикали в три ряда на равном расстоянии друг от друга h = (0,25-0,45)·Н. Горизонтальные стволы среднего ряда (нагнетательных скважин 4) размещают в плане между горизонтальными стволами верхнего и нижнего рядов (соответственно добывающих скважин 2 и 3) на расстоянии x = (1-5)·h. Таким образом, горизонтальные стволы располагают в шахматном порядке при рассмотрении в фас (фиг. 1). Горизонтальные стволы размещают перпендикулярно вектору главного максимального напряжения σmax коллектора, т.е. выбирают из соображений максимального охвата последующего МГРП. Длину каждого горизонтального ствола скважин 2-4 выполняют равной l ≥ 8·h.

Далее скважины 2, 3 и 4 обсаживают, цементируют кольцевое пространство между обсадной колонной и коллектором. Горизонтальные стволы вторично вскрывают с ориентированным направлением перфорационных отверстий. В скважинах 2 верхнего ряда вдоль по горизонтальному стволу перфорируют нижнюю половину окружности эксплуатационной колонны и цементного камня, получая перфорационные отверстия 5, в скважинах 3 нижнего ряда – верхнюю, получая перфорационные отверстия 6, что позволяет исключить развитие трещин выше и ниже продуктивной толщины пласта. В скважинах 4 среднего ряда горизонтальные стволы перфорируют по всей площади, получая перфорационные отверстия 7. Для проведения данных операций применяют перфораторы, спускаемые в горизонтальные стволы на колоннах гибких труб.

Во всех скважинах 2-4 проводят кислотный МГРП по любой из известных технологий от «носка» горизонтального ствола к его «пятке». Расстояние b между ступенями устанавливают не более 50 м. Причем в плане местоположение каждой ступени МГРП в соседних скважинах выполняют в шахматном порядке, т.е. ступни МГРП соседних в плане добывающих и нагнетательных скважин 2-4 и 3-4 не совпадают, но совпадают в соседних добывающих 2 и 3, а также в соседних нагнетательных 4 (фиг. 2). Скорость и объем закачиваемой кислоты определяют из условий:

- образования структуры растворения карбонатов, представляющей собой разветвленные полости,

- полудлиной трещин a = (0,5-1,0)·х,

- полувысотой трещин с = (0,5-1,0)·h.

В результате кислотного МГРП получают систему разветвленных трещин для добывающих скважин – wдn, для нагнетательных скважин – wнn, где n – номер ступени МГРП.

Согласно постановлению Правительства РФ № 700-Р, при значениях проницаемости 2 мД и менее, коллекторы относятся к категории трудноизвлекаемых запасов и для них действуют пониженные ставки налога на добычу полезных ископаемых (НДПИ), что позволяет проводить мероприятия по бурению горизонтальных скважин с проведением МГРП эффективно, с точки зрения экономики. Согласно расчетам, при толщине коллектора H менее 50 м, предлагаемый способ КГД значительно снижает нефтеотдачу ввиду уменьшения охвата залежи. Расстояние h между горизонтальными стволами по вертикали определено из условий максимального охвата по толщине трещинами МГРП с учетом последующей эффективной разработки. Согласно расчетам, при величине h < 0,25·Н участки пласта выше нагнетательной скважины и ниже добывающей не охвачены воздействием, а при h > 0,45·Н появляется большой риск вскрытия зон не коллектора.

Расстояние х между соседними горизонтальными стволами верхнего и нижнего рядов в плане определено из условий максимального охвата пласта по площади трещинами МГРП с учетом последующей эффективной разработки. Согласно расчетам, при величине х < 1,0·h возникают сложности, связанные с тем, что длина трещин последующего МГРП оказывается меньше высоты, что значительно снижает охват по площади, а при x > 5,0·h возникает опасность соединения трещин МГРП соседних добывающих и нагнетательных скважин ввиду необходимости создания их достаточно протяженными по длине. Все это приводит к снижению нефтеотдачи.

Аналогично, с целью достижения большего охвата, определено значение длин l горизонтальных стволов. Плотные коллекторы характеризуются высокой зональной неоднородностью. Согласно расчетам, при l < 8·h, ввиду вскрытия значительного количества зон не коллектора, эффективная длина скважины сильно снижается, что приводит к низкому охвату и невысокой нефтеотдаче.

Согласно исследованиям, для коллекторов с проницаемостью менее 2 мД, при расстоянии между ступенями МГРП более 50 м, охват пласта значительно снижается, что также уменьшает нефтеотдачу. Структура трещин кислотного МГРП, представляющая собой разветвленные полости, наиболее подходит для слабопроницаемых карбонатных коллекторов и характеризуется максимальным охватом залежи.

Ввиду того что местоположение каждой соответствующей ступени МГРП в соседних в плане добывающей и нагнетательной скважинах не совпадает в структурном плане, согласно расчетам, полудлина а трещин МГРП каждой ступени не должна превышать расстояния х между соседними горизонтальными стволами по горизонтали, т.к. при a > 1,0·х возникает опасность соединения трещин МГРП соседних скважин. При a < 0,5·х охват по площади снижается, что приводит к низкой нефтеотдаче. Аналогично подбиралась, согласно расчетам, оптимальная полувысота с трещин ступеней МГРП, которая должна покрывать расстояние h между скважинами по вертикали, но не быть больше неё, т.к. при с > 1,0·h возникает опасность выхода трещин за пределы пласта, что может привести к обводнению скважины. При этом если с < 0,5·h, то охват по толщине снижается, что приводит к низкой нефтеотдаче.

После МГРП в скважины 2-4 спускают колонны труб 8 с фильтрами 9 в горизонтальных стволах и установленными на фильтрах 9 пакерами 10 для герметизации пространства между эксплуатационной колонной и фильтром 9. Причем пакеры 10 устанавливают в точках горизонтальных стволов между ступенями МГРП. В месте соединения колонны труб 8 с фильтром 9 также устанавливают пакер 11 для герметизации межтрубного пространства. Таким образом, горизонтальные стволы разделяют на участки с возможностью отключения определенных участков ствола пакерами 10.

Далее добывающие скважины 2 и 3 промывают, осваивают и пускают в добычу. При каждом снижении дебита нефти одной из добывающих скважин 2 и/или 3 ниже экономически рентабельного значения в соответствующие нагнетательные скважины 4 (одновременно в две нагнетательные скважины, расположенные по обе стороны от добывающей скважины) среднего ряда закачивают газ (CO2, N2 или углеводородный газ). При этом указанные добывающие скважины останавливают. Закачку ведут до тех пор, пока давление закачки не вырастет как минимум в три раза, т.к. при меньшем значении, согласно исследованиям, восстановление пластового давления в плотных коллекторах недостаточно. После этого остановленные добывающие скважины пускают в работу. Согласно исследованиям, применение газа наиболее эффективно для преимущественно гидрофобных коллекторов, кроме того, газ намного подвижнее воды, что позволяет ему проникать в глубь пласта, восстанавливая пластовое давление и частично растворяясь в нефти.

Разработку ведут до полной экономически рентабельной выработки участка плотного карбонатного коллектора.

Результатом внедрения данного способа является повышение нефтеотдачи мощных плотных карбонатных нефтяных коллекторов.

Примеры конкретного выполнения способа.

Пример 1. Участок 1 плотного карбонатного нефтенасыщенного коллектора, средняя абсолютная проницаемость которого составляет 2 мД, а средняя толщина H = 50 м, разбуривают четырьмя горизонтальными добывающими скважинами 2, 3 и тремя горизонтальными нагнетательными скважинами 4 (фиг. 1, 2, 3). Горизонтальные стволы скважин 2, 3 и 4 размещают параллельно друг другу в вертикальной плоскости, причем располагают по вертикали в три ряда на равном расстоянии друг от друга h = 0,45·Н = 0,45·50 = 22,5 м. Горизонтальные стволы среднего ряда (нагнетательных скважин 4) размещают в плане между горизонтальными стволами верхнего и нижнего рядов (соответственно добывающих скважин 2 и 3) на расстоянии x = 5·h = 5·22,5 = 112,5 м. Горизонтальные стволы размещают перпендикулярно вектору главного максимального напряжения σmax коллектора. Длину каждого горизонтального ствола скважин 2-4 выполняют равной l = 8·h = 8·22,5 = 180 м.

Далее скважины 2, 3 и 4 обсаживают, цементируют кольцевое пространство между обсадной колонной и коллектором. Горизонтальные стволы вторично вскрывают с ориентированным направлением перфорационных отверстий. В скважинах 2 верхнего ряда вдоль по горизонтальному стволу перфорируют нижнюю половину окружности эксплуатационной колонны и цементного камня, получая перфорационные отверстия 5, в скважинах 3 нижнего ряда – верхнюю, получая перфорационные отверстия 6, в скважинах 4 среднего ряда горизонтальные стволы перфорируют по всей площади, получая перфорационные отверстия 7. Для проведения данных операций применяют перфораторы, спускаемые в горизонтальные стволы на колоннах гибких труб. В качестве перфоратора применяют перфорационную систему ПК114КЛ ORION (ЗАО «Взрывгеосервис», Республика Башкортостан, г. Нефтекамск, ул. Магистральная, 19).

Во всех скважинах 2-4 проектируют кислотный МГРП по технологии со сдвоенными пакерами, спускаемыми на гибких трубах, с проведением разрывов от «носка» горизонтального ствола к его «пятке». Расстояние b между ступенями МГРП определяют расчетами оптимального охвата на гидродинамической модели, b=45 м. Причем в плане местоположение каждой ступени МГРП в соседних скважинах выполняют в шахматном порядке, т.е. ступни МГРП соседних в плане добывающих и нагнетательных скважин 2-4 и 3-4 не совпадают, но совпадают в соседних добывающих 2 и 3, а также в соседних нагнетательных 4 (фиг. 2). Таким образом, получают по четыре ступени МГРП в каждой скважине 2-4.

Лабораторными исследованиями определяют оптимальное давление (скорость) закачки кислоты для образования разветвленных полостей. В качестве кислоты используют 22%-ную соляную кислоту. Моделированием определяют оптимальную полудлину a = 0,5·х = 0,5·112,5 ≈ 56 м и полувысоту трещин с = 1,0·h = 1,0·22,5 = 22,5 м.

Далее осуществляют кислотный МГРП, в результате которого получают систему разветвленных трещин для добывающих скважин – wдn, для нагнетательных скважин – wнn, где n – номер ступени МГРП.

После МГРП в скважины 2-4 спускают колонны труб 8 с фильтрами 9 в горизонтальных стволах и установленными на фильтрах 9 пакерами 10 для герметизации пространства между эксплуатационной колонной и фильтром 9. Причем пакеры 10 устанавливают в точках горизонтальных стволов между ступенями МГРП. В месте соединения колонны труб 8 с фильтром 9 также устанавливают механический пакер 11 для герметизации межтрубного пространства. Таким образом, горизонтальные стволы разделяют на участки с возможностью отключения определенных участков ствола пакерами 10.

Далее добывающие скважины 2 и 3 промывают, осваивают и пускают в добычу. При снижении через 10 месяцев дебита нефти одной из добывающих скважин 3 до 0,5 т/сут, т.е. ниже экономически рентабельного значения, данную добывающую скважину останавливают, в соответствующие нагнетательные скважины 4 (одновременно в две нагнетательные скважины, расположенные по обе стороны от добывающей скважины 3) среднего ряда закачивают углекислый газ CO2 с расходом 400 м3/сут. Закачку ведут до тех пор, пока давление закачки не вырастет в три раза. Затем закачку СО2 прекращают, а добывающую скважину 3 пускают в добычу.

Операции по повторной закачке СО2 повторяют еще 10 раз в течение всего периода разработки участка 1 плотного карбонатного коллектора на каждой из добывающих скважин 2 и 3 при снижении дебита нефти до 0,5 т/сут.

Разработку ведут до полной экономически рентабельной выработки участка 1 плотного карбонатного коллектора.

Пример 2. Выполняют как пример 1. Средняя толщина коллектора H = 200 м, горизонтальные стволы скважин 2 и 3 размещают на расстоянии по вертикали h = 0,25·Н = 0,25·200 = 50 м, по горизонтали х = 1,0·Н = 1,0·200 = 200 м. Длину каждого горизонтального ствола скважин 2-4 выполняют равной l = 10·h = 10·50 = 500 м. Расстояние между ступенями МГРП b=50 м. Таким образом, получают по 10 ступеней МГРП на каждой скважине. Моделированием определяют оптимальную полудлину a = 1,0·х = 1,0·200 = 200 м и полувысоту трещин с = 0,5·h = 0,5·50 = 25 м. В качестве газа используют попутный нефтяной газ с вышележащих традиционных коллекторов.

В результате разработки участка 1, которые ограничили снижением дебита нефти добывающих скважин 2 и 3 менее 0,5 т/сут при невозможности его увеличения закачкой газа в нагнетательные скважины 2, было добыто 289,7 тыс.т нефти, коэффициент нефтеизвлечения (КИН) составил 0,259 д.ед. По прототипу при прочих равных условиях было добыто 165,5 тыс.т нефти, КИН составил 0,148 д.ед. Прирост КИН по предлагаемому способу – 0,111 д.ед.

Предлагаемый способ позволяет повысить охват и коэффициент нефтеизвлечения мощных плотных карбонатных нефтяных коллекторов за счет применения кислотного МГРП и последующей периодичной закачки газа.

Применение предложенного способа позволит решить задачу повышения нефтеотдачи мощных плотных карбонатных нефтяных коллекторов.

Способ разработки плотных карбонатных коллекторов, включающий бурение горизонтальных скважин, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий, проведение многостадийного гидравлического разрыва пласта - МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин, отличающийся тем, что выбирают нефтенасыщенный коллектор со средней толщиной H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, коллектор разбуривают параллельными горизонтальными скважинами, горизонтальные стволы которых направлены перпендикулярно вектору главного максимального напряжения коллектора, горизонтальные стволы размещают по вертикали в три ряда на равном расстоянии друг от друга h = (0,25-0,45)·Н, горизонтальные стволы среднего ряда располагают в плане между горизонтальными стволами верхнего и нижнего рядов на расстоянии x = (1-5)·h по горизонтали, длину каждого горизонтального ствола выполняют равной l ≥ 8·h, в скважинах верхнего ряда вдоль по горизонтальному стволу перфорируют нижнюю половину окружности эксплуатационной колонны и цементного камня, в скважинах нижнего ряда – верхнюю, в скважинах среднего ряда горизонтальные стволы перфорируют по всей площади, во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м, причем в плане местоположение каждой ступени МГРП в соседних скважинах выполняют в шахматном порядке, скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей из себя разветвленные полости, во-вторых, полудлиной трещин a = (0,5-1,0)·х и полувысотой трещин с = (0,5-1,0)·h, после МГРП скважины верхнего и нижнего рядов - добывающие скважины - осваивают и пускают в добычу, при каждом снижении дебита нефти добывающих скважин ниже экономически рентабельного значения данные скважины останавливают, в скважины среднего ряда - нагнетательные скважины - закачивают газ до тех пор, пока давление закачки не вырастет как минимум в три раза, после чего остановленные добывающие скважины пускают в работу.
Способ разработки плотных карбонатных коллекторов
Способ разработки плотных карбонатных коллекторов
Способ разработки плотных карбонатных коллекторов
Способ разработки плотных карбонатных коллекторов
Источник поступления информации: Роспатент

Показаны записи 241-250 из 264.
26.08.2017
№217.015.e820

Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи слабопроницаемых карбонатных коллекторов. В способе разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа выбирают скважины с горизонтальным окончанием диаметром ствола...
Тип: Изобретение
Номер охранного документа: 0002627336
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.e836

Способ разработки плотных карбонатных залежей нефти

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки мощных плотных карбонатных залежей нефти с применением многостадийного гидравлического разрыва пласта (МГРП) в режиме кислотно-гравитационного дренирования (КГД). Способ включает бурение скважин с...
Тип: Изобретение
Номер охранного документа: 0002627338
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.e991

Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке нефтематеринских коллекторов с применением управляемого многостадийного гидравлического разрыва пласта (МГРП). Способ включает применение в скважинах для изоляции высокопроницаемых зон и трещин закачки...
Тип: Изобретение
Номер охранного документа: 0002627799
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.0395

Способ соединения и разъединения труб для добычи битуминозной нефти и устройство для лазерной сварки и резки при реализации способа

Группа изобретений относится к способу соединения и разъединения труб для добычи битуминозной нефти и устройству для лазерной стыковой сварки и резки труб. Техническим результатом является повышение надежности колонны труб при закачке теплоносителя. Способ соединения и разъединения труб для...
Тип: Изобретение
Номер охранного документа: 0002630327
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03c4

Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа

Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи плотных нефтяных коллекторов циклической закачкой углекислого газа. Способ включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в...
Тип: Изобретение
Номер охранного документа: 0002630318
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1aa1

Способ получения представительных образцов сверхвязкой нефти из нефтенасыщенного керна и устройство для его осуществления

Группа изобретений относится к контрольно-измерительной технике и предназначена для использования в нефтедобывающей промышленности для исследования пластов, а именно к способу получения пробы сверхвысоковязкой нефти или битума из образца нефтенасыщенного керна пластового резервуара, и может...
Тип: Изобретение
Номер охранного документа: 0002636481
Дата охранного документа: 23.11.2017
17.02.2018
№218.016.2b37

Способ кислотной обработки коллекторов с водонефтяным контактом

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатных нефтяных коллекторов. Способ кислотной обработки коллекторов с водонефтяным контактом включает спуск в горизонтальный ствол скважины колонны гибких труб,...
Тип: Изобретение
Номер охранного документа: 0002642900
Дата охранного документа: 29.01.2018
19.07.2018
№218.016.725d

Способ выработки слабодренируемых участков нефтяной залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки неоднородной нефтяной залежи с наличием слабодренируемых участков. Способ включает выработку запасов нефти скважинами, проведение исследований скважин, проведение гидроразрыва пласта, применение...
Тип: Изобретение
Номер охранного документа: 0002661513
Дата охранного документа: 17.07.2018
22.01.2019
№219.016.b299

Способ эксплуатации скважины, осложненной выносом механических примесей

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации нефтедобывающих скважин с установками штанговых глубинных насосов, осложненных выносом механических примесей. Способ включает спуск на насосных штангах штангового глубинного насоса, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002677768
Дата охранного документа: 21.01.2019
29.01.2019
№219.016.b50b

Способ разработки многопластовых залежей с трудноизвлекаемыми запасами нефти методом уплотняющей сетки

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки нефтяной залежи с несколькими объектами, совпадающими в структурном плане, коллектора которых относятся к трудноизвлекаемым запасам нефти. Способ включает бурение скважин по сетке, уплотнение сетки...
Тип: Изобретение
Номер охранного документа: 0002678337
Дата охранного документа: 28.01.2019
Показаны записи 241-250 из 334.
26.08.2017
№217.015.e820

Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи слабопроницаемых карбонатных коллекторов. В способе разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа выбирают скважины с горизонтальным окончанием диаметром ствола...
Тип: Изобретение
Номер охранного документа: 0002627336
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.e836

Способ разработки плотных карбонатных залежей нефти

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки мощных плотных карбонатных залежей нефти с применением многостадийного гидравлического разрыва пласта (МГРП) в режиме кислотно-гравитационного дренирования (КГД). Способ включает бурение скважин с...
Тип: Изобретение
Номер охранного документа: 0002627338
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.e991

Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке нефтематеринских коллекторов с применением управляемого многостадийного гидравлического разрыва пласта (МГРП). Способ включает применение в скважинах для изоляции высокопроницаемых зон и трещин закачки...
Тип: Изобретение
Номер охранного документа: 0002627799
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.0395

Способ соединения и разъединения труб для добычи битуминозной нефти и устройство для лазерной сварки и резки при реализации способа

Группа изобретений относится к способу соединения и разъединения труб для добычи битуминозной нефти и устройству для лазерной стыковой сварки и резки труб. Техническим результатом является повышение надежности колонны труб при закачке теплоносителя. Способ соединения и разъединения труб для...
Тип: Изобретение
Номер охранного документа: 0002630327
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03c4

Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа

Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи плотных нефтяных коллекторов циклической закачкой углекислого газа. Способ включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в...
Тип: Изобретение
Номер охранного документа: 0002630318
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1aa1

Способ получения представительных образцов сверхвязкой нефти из нефтенасыщенного керна и устройство для его осуществления

Группа изобретений относится к контрольно-измерительной технике и предназначена для использования в нефтедобывающей промышленности для исследования пластов, а именно к способу получения пробы сверхвысоковязкой нефти или битума из образца нефтенасыщенного керна пластового резервуара, и может...
Тип: Изобретение
Номер охранного документа: 0002636481
Дата охранного документа: 23.11.2017
17.02.2018
№218.016.2b37

Способ кислотной обработки коллекторов с водонефтяным контактом

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатных нефтяных коллекторов. Способ кислотной обработки коллекторов с водонефтяным контактом включает спуск в горизонтальный ствол скважины колонны гибких труб,...
Тип: Изобретение
Номер охранного документа: 0002642900
Дата охранного документа: 29.01.2018
10.05.2018
№218.016.4cde

Способ разработки двух объектов разной стратиграфической принадлежности

Изобретение относится к области нефтегазодобывающей промышленности, в частности к разработке многообъектного месторождения. Способ разработки нефтяного месторождения включает бурение наклонно направленных добывающих и нагнетательных скважин, отбор из добывающих скважин и закачку вытесняющего...
Тип: Изобретение
Номер охранного документа: 0002652240
Дата охранного документа: 25.04.2018
19.07.2018
№218.016.725d

Способ выработки слабодренируемых участков нефтяной залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки неоднородной нефтяной залежи с наличием слабодренируемых участков. Способ включает выработку запасов нефти скважинами, проведение исследований скважин, проведение гидроразрыва пласта, применение...
Тип: Изобретение
Номер охранного документа: 0002661513
Дата охранного документа: 17.07.2018
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
+ добавить свой РИД