×
25.08.2017
217.015.bbd3

Результат интеллектуальной деятельности: Способ нанесения покрытий на твердые сплавы

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлообработки и может быть использовано для нанесения износостойких покрытий на режущий инструмент. Способ включает нанесение покрытия на поверхность пластины из твердого сплава в камере установки PVD, при этом на поверхность пластины наносят защитный слой из нитридов тугоплавких соединений, после чего без перерыва процесса в камере установки PVD осуществляют нанесение на защитный слой покрытия из алюминия, которое затем обрабатывают на установке микродугового оксидирования с образованием слоев оксида алюминия α и γ-модификаций толщиной 4-21 мкм. Изобретение повышает стойкость инструмента и качество обработки при действии высоких температур в зоне резания. 3 табл.

Изобретение относится к области металлообработки, а именно к способам нанесения износостойких покрытий на режущий инструмент.

Известен способ получения износостойкого покрытия для режущего инструмента, описанный в патенте RU №2423547, С23С 14/24, 2011. Способ включает вакуумное ионно-плазменное нанесение износостойкого покрытия на основе сложного нитрида титана-хрома-циркония, при нанесении покрытия в качестве дополнительных компонентов используют алюминий и ниобий в количестве 1÷5 ат. % и содержание циркония более 5 ат. %. Нанесение покрытия осуществляют с помощью расположенных горизонтально в одной плоскости трех дуговых испарителей, подключенных к сепаратору капельной фазы, следующих составов: титан-алюминиевый катод из сплава ВТ-5, комбинированный цирконий-ниобиевый катод и хромовый катод. Недостатком нанесения известного способа является то, что покрытие не достигает максимальной твердости, определенной структурой кристаллов нитрида. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия. Кроме того, покрытие работает при температуре, не превышающей 1000°С.

В качестве прототипа выбран способ получения износостойкого покрытия, патент РФ №2494172, С23С 14/24, С23С 14/06, 2013, включающий вакуумное ионно-плазменное нанесение покрытия на основе сложного нитрида металлов с помощью нескольких дуговых испарителей, нанесение покрытия осуществляют в среде азотокислородной смеси с содержанием кислорода 1÷3 масс. % при давлении 0,07÷0,45 Па с использованием по меньшей мере двух дуговых испарителей, один из которых содержит гафниевый или циркониевый катод, остальные титановые. На поверхности обрабатываемого инструмента образуется покрытие из нитридов титана и гафния (Ti,Hf)N или циркония (Ti,Zr)N, в объеме которого случайно расположены наноразмерные частицы оксидов гафния или циркония. В процессе осаждения покрытия в среде азотокислородной смеси в первую очередь образуются кристаллы HfO2 или ZrO2. Оптимальный диапазон содержания кислорода в реакционной газовой смеси - 1÷3 масс. %. Покрытие обладает высокой твердостью, превышающей почти в 2 раза твердость покрытия из нитридов титана и циркония или гафния.

Недостатком данного покрытия является его низкая работоспособность при высоких температурах резания (1000°С-1200°С). Это связано с тем, что наноразмерные частицы оксидов гафния или циркония в покрытии расположены случайно и не образуют сплошного слоя, кроме того, покрытие не защищает поверхность материала основы от действия высоких температур. В результате теплоотдачи в инструмент основа перегревается и пластически деформируется, что ведет к потере его стойкости и снижению качества поверхности.

Увеличение стоимости в последнее время металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ при высоких температурах эксплуатации. Основной причиной износа РИ является возникновение трещин в его режущей части, являющихся причиной появления сколов и выкрашиваний, связанных с усталостным разрушением и явлением ползучести режущего клина РИ. Ползучесть, в свою очередь, вызвана проникновением тепла, образующегося при резании и трении стружки о поверхности инструмента, вглубь инструмента. Одним из путей повышения стойкости и работоспособности РИ с покрытием является нанесение покрытий многослойного типа. Наличие в покрытии слоев с определенными теплофизическими и механическими свойствами способно тормозить процессы образования и распространения трещин без снижения микротвердости, улучшить термонапряженное состояние РИ с покрытием, снизить температуру основы и повысить стойкость РИ.

Технический результат разработанного покрытия - повышение стойкости режущего инструмента и качества обработки при высоких температурах. Пластина режущего инструмента содержит подложку из твердого сплава с, по меньшей мере, двумя износостойкими покрытиями, в том числе наружным керамическим покрытием, при этом на поверхность пластины под керамическое покрытие наносят защитный слой из нитридов тугоплавких соединений.

Технический результат достигается следующим образом.

Способ нанесения покрытий на твердые сплавы включает нанесение покрытия на поверхность пластины из твердого сплава на установке PVD. На установке PVD на поверхность пластины наносят защитный слой из нитридов тугоплавких соединений, после чего, не прерывая процесс, осуществляют нанесение на защитный слой покрытия из алюминия, которое затем обрабатывают на установке микродугового оксидирования (МДО) для образования слоев оксида алюминия α и γ-модификаций толщиной 4-21 мкм.

Способ заключается в нанесении нижнего, прилегающего к основе защитного слоя, состоящего из нитридов тугоплавких соединений и верхнего слоя алюминия при остаточном давлении в камере установки 1,2⋅10-3 Па в среде аргона алюминиевым испарителем на установке PVD. А также микродуговом оксидировании алюминиевого покрытия на всю глубину до защитного слоя с образованием слоев α, γ-Al2O3 толщиной 4-21 мкм на другой установке (МДО).

На основании анализа закономерностей процесса получения оксидных покрытий была выдвинута гипотеза о необходимости нанесения защитного слоя на поверхность твердого сплава - основу.

Защитный слой необходим в связи с тем, что наносимый жидкий алюминий проникает в основу, образуя нежелательные химические соединения с компонентами твердого сплава.

Кроме того, получение керамикоподобных покрытий связано с высокой температурой 1200°С фазового перехода γ-Al2O3 в α-Al2O3 модификацию (корунд с ромбоэдрической решеткой). При этой температуре происходит нежелательное окисление компонентов твердого сплава, что значительно снижает функциональные свойства износостойкого покрытия.

Поэтому при нанесении жидкого алюминия и проведении процесса МДО защитный слой должен выполнять три функции:

- защищать поверхность твердого сплава от образования химических соединений кобальта и вольфрама с жидким сверхактивным алюминием;

- увеличить температуру оксидирования и получить стабильную модификацию α-Al2O3, а также пористые метастабильные модификации Al2O3;

- поднять производительность процесса за счет применения высокой мощности оксидирования.

В качестве защитного слоя под нанесение алюминиевого покрытия был выбран слой из (Ti,Nb,Zr)N. Данный слой является плотным, тепло- и химически стойким, следовательно, обладает хорошими защитными свойствами.

На первом этапе для повышения прочности сцепления покрытий с основой рекомендуется проводить стандартную предварительную очистку изделий. Очистка от загрязнений, травление, шлифование или ударная обработка поверхности, кратковременная выдержка в восстановительной атмосфере, газовое или ионное травление, ультразвуковая, вакуумная и электрохимическая очистка - методы очистки подложки.

После очистки защитный слой и алюминий наносятся на установке PVD модели ННВ6.6-И1 по стандартной методике, которая описана в ТИ 48-4201-3-44-03 «Нанесение износостойких покрытий методом КИБ на установках ННВ6.6-И1 типа «Булат». Установка содержит систему создания вакуума и рабочую камеру, где осуществляется непосредственно генерация плазмы, создание ионно-плазменного потока и непосредственно проводится обработка пластин.

Очищенные пластины загружают в камеру на оснастку. Пластины располагаются передней плоскостью перпендикулярно направлению потока ионов распыляемого металла. После этого производится вакуумирование рабочей камеры: вначале форвакуумными насосами создается вакуум около 1,3 Па, а затем производится откачка на высокий вакуум диффузионным насосом до 1,3×10-3 Па. Подается азот при рабочем давления в камере 1,2×10-3 Па, опорное напряжение, подаваемое на подложку, составляет от 50 до 1200 В. Для формирования ионного потока использовался катод из Ti марки ВТ 1-0, который распылялся дугой 100-120 А. Для нанесения слоя алюминия использовался алюминиевый катод.

Режим нанесения защитного слоя выбирался на основании анализа экспериментальных данных (таблица 1).

Для выполнения необходимых функций наиболее приемлемым является второй вариант режима нанесения барьерного слоя.

Вторым этапом является получение слоя алюминия на защитном слое. Режим нанесения алюминиевого покрытия выбирался на основании анализа экспериментальных исследований (таблица 2).

Как следует из таблицы, при нанесении покрытия по первому варианту оно получается неравномерным в связи с оплавлением и сползанием с поверхности пластины алюминия.

При нанесении покрытия по третьему варианту заметно снижается производительность за счет увеличения времени процесса.

Наиболее приемлем второй вариант режимов нанесения покрытия несмотря на наличие некоторого количества капельной фазы, которая переплавляется при высоких температурах микродугового разряда характерных для МДО алюминия. Толщина алюминиевого слоя не должна превышать 20 мкм. Таким образом, твердосплавная пластина покрывалась защитным слоем и слоем алюминия.

Далее слой алюминия на твердосплавной пластине, покрытой защитным слоем и слоем алюминия, окислялся до получения оксида алюминия (α, γ-Al2O3 модификаций).

Для окисления алюминия был выбран метод микродугового оксидирования (МДО) - это процесс получения покрытий на поверхности электропроводящего материала, находящегося в электролите, в высоковольтном режиме, обеспечивающем наличие локальных микроразрядов, перемещающихся по поверхности при его анодной поляризации.

Выбранный метод обладает следующими преимуществами:

а) возможностью получения покрытий с более высокими показателями их функциональных свойств (твердость, износостойкость, адгезия к металлической основе, сопротивление усталости, противокоррозионная защитная способность);

б) минимизацией производственных площадей и сокращением времени технологического процесса, поскольку перед МДО не требуется предварительная подготовка поверхности деталей и конструкций;

в) высокой экологической чистотой процесса.

Известно, что метод микродугового оксидирования (МДО) применяется, в основном, для создания износостойкого защитного покрытия на поверхности алюминиевого сплава. Нанесение покрытия методом МДО на режущие пластины из твердого сплава не производилось.

Одним из важных этапов процесса МДО является получение оксида алюминия на поверхности барьерного слоя. От качества оксидного слоя зависят эксплуатационные характеристики покрытия, такие как износостойкость, прочность сцепления с основой и другие.

Основные требования к покрытию из оксида алюминия:

- одинаковая толщина покрытия по всей поверхности пластины;

- отсутствие сколов покрытия;

- отсутствие отслоений от основы.

Пример осуществления предлагаемого способа

На первом этапе создания покрытия твердосплавные пластины ТТ10К8Б формы SNUN120408 промывают в ультразвуковой ванне, протирают спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Ионно-плазменной камерной вакуумной ННВ-6.6-И1» типа «Булат», снабженной тремя испарителями, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 1,5-2×10-5 мм рт.ст., подают аргон до давления 1,5-2×10-3 мм рт.ст., включают поворотное устройство, подают на него отрицательное напряжение 1000-1100 В, включают один испаритель (катод) из титана марки ВТ1 при токе дуги 130 А, производят ионную очистку и нагрев пластин до температуры 750-800°С в течение 10-15 мин. Затем снижают отрицательное напряжение до 120 В, включают два противоположных испарителя (катода) из ниобия и циркония, подают в камеру реакционный газ - азот и осаждают покрытие толщиной 4 мкм (партия пластин №2,), 5 мкм (партия пластин №3, 4, 7) и 7 мкм (партия пластин №1, 5, 6) в течение 90-110 мин при давлении газа 3×10-3 мм рт.ст. Температура конденсации при этом 450-500°С. Затем выключают испарители, подачу реакционного газа и вращение поворотного приспособления, осуществляют остывание пластин в течение 45-50 мин. После открытия камеры, не вынимая пластины, меняют титановый, ниобиевый и циркониевый катоды на алюминиевый марки А1. Откачивают камеру на высокий вакуум и подают аргон до давления 1,5-2×10-3 мм рт.ст., устанавливают ток дугового разряда 100 А, поднимают напряжение на подложке до величины 1000-1100 В, производят ионную очистку и нагрев до температуры 550-600°С, затем снижают напряжение на подложке до 80 В. Проводят процесс нанесения покрытия толщиной 4 мкм (партия пластин №2); 15 и 17 мкм (партия пластин №4, 5); 27 и 25 мкм (партия пластин №6, 7); и 30 мкм (партия пластин №1) в течение 40-150 мин при температуре изделий 500-550°С. Затем выключают алюминиевый испаритель, подачу реакционного газа и вращение поворотного устройства. Через 45-50 мин открывают камеру и извлекают инструмент с покрытием и дают ему остыть окончательно на воздухе.

Следующий этап получение на пластинах слоя α,γ-Al2O3 на установке микродугового оксидирования.

1) Образцы с защитным слоем и нанесенным на него алюминиевым покрытием устанавливают на токопроводящую оснастку, которую подключают к источнику тока.

2) В ванну заливают щелочной электролит «3-2-7» следующего состава: 3 г/л NaOH, 2 г/л Na6P6O18, 7 г/л технического жидкого стекла (ТЖС). Включают мешалку, которая его перемешивает. Для охлаждения электролита по контуру ванны пускают холодную воду. Ванну, являющуюся катодом, подключают к источнику тока.

3) Образцы на оснастке опускают в электролит, плотность тока которого составила 7,5 мА/мм2. Время оксидирования 5-25 мин.

4) По окончании процесса оксидирования образцы достают из ванны, промывают и сушат в сушильном шкафу.

Анализ результатов показал, что оксидированный слой покрытия состоит из трех слоев:

- из верхнего пористого хрупкого слоя оксида алюминия, судя по рентгенографическим данным, скорее всего состоящего из Al2O3-каппа с добавками дельта, зета, бета и эта;

- из серого плотного слоя оксида алюминия, состоящего из α-Al2O3 (с твердостью 2000-2100 кг/мм2;

- слоя, прилегающего к защитному слою, представляющего из себя, судя по микротвердости, γ-Al2O3 (с твердостью 1000-1200 кг/мм2).

При этом толщина защитного слоя должна быть 4-7 мкм, это связано с тем, что при меньших толщинах кобальт начинает взаимодействовать с алюминием, охрупчивая всю композицию, выше 7 мкм значительно увеличивается трудоемкость и, следовательно, цена покрытия. Суммарная толщина слоев α-, и γ-Al2O3 должна составлять 4-21 мкм, т.к. ниже 4 мкм невозможно получить α, γ-Al2O3 модификацию, а толщина оксидных слоев выше 21 мкм ограничена общей толщиной покрытия 25 мкм (4+21), так как выше этого значения происходит разрушение покрытия за счет высоких остаточных напряжений в покрытии.

Стойкостные испытания проводили на токарно-винторезном станке 16К20. В качестве обрабатываемого материала использовалась конструкционная Сталь 50. Режимы резания: V=240 м/мин, S=0,2 мм/об, t=1,0 мм. Проводили испытания твердосплавных пластин марки ТТ10К8Б, обработанных по предлагаемому способу. За критерий затупления принимался износ по задней грани шириной до 0,5 мм.

Как видно из приведенных в табл. 3 данных, стойкость пластин с общей толщиной покрытия 8-25 мкм, обработанных по предлагаемому способу, выше стойкости пластин с покрытием (Ti, Nb, Zr)N толщиной 5 мкм, применяемыми в промышленности.

Способ нанесения покрытия на пластину из твердого сплава, включающий нанесение покрытия на поверхность пластины из твердого сплава в камере установки PVD, отличающийся тем, что на поверхность пластины наносят защитный слой из нитридов тугоплавких соединений, после чего без перерыва процесса в камере установки PVD осуществляют нанесение на защитный слой покрытия из алюминия, которое затем обрабатывают на установке микродугового оксидирования (МДО) с образованием слоев оксида алюминия α и γ-модификаций толщиной 4-21 мкм.
Источник поступления информации: Роспатент

Показаны записи 151-160 из 354.
29.12.2017
№217.015.f3eb

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002637705
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f57e

Полиолефиновый композит, наполненный углеродными нанотрубками, для повышения электропроводности, модифицированный смесью полисилоксанов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Теплоэлектропроводный полиолефиновый композит, наполненный углеродными нанотрубками, содержит полиолефиновый...
Тип: Изобретение
Номер охранного документа: 0002637237
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f5e3

Биоактивная полимерная нить для осуществления послойной 3d-печати

Изобретение относится к композиционному материалу, выполненному в форме нити, на основе термопластичного полимера с добавлением биоактивного керамического компонента и может быть использовано для осуществления 3D-печати биорезорбируемых конструкций медицинского назначения методом наплавления...
Тип: Изобретение
Номер охранного документа: 0002637841
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f605

Способ производства чугуна дуплекс-процессом ромелт (варианты)

Изобретение относится к производству жидкого чугуна из бедных железных руд, содержащих 35-52% общего железа с отношением FeO/FeO больше 1,5 последовательно в двух печах барботажного типа, соединенных между собой желобом. В шлаковую ванну первой печи непрерывно загружают железную руду, уголь и...
Тип: Изобретение
Номер охранного документа: 0002637840
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f664

Способ получения электродов из сплавов на основе алюминида титана

Изобретение относится к области специальной металлургии, в частности к получению электродов из сплавов на основе алюминида титана. Способ включает получение литого интерметаллидного полуфабриката методом центробежного СВС-литья с использованием реакционной смеси при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002630157
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f66d

Система автоматического управления электрическим режимом плавильного агрегата с двумя источниками электронагрева с использованием интеллектуального датчика контроля агрегатного состояния расплавляемого металла

Изобретение относится к электрометаллургии и решает задачу управления режимом работы печного агрегата, содержащего два источника нагрева: сопротивлением и дугой постоянного тока. Технический результат - улучшение качества регулирования при нагреве материала в печи. Система автоматического...
Тип: Изобретение
Номер охранного документа: 0002630160
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f714

Манипулятор для замены погружного стакана на слябовой машине непрерывного литья заготовок

Изобретение относится к металлургии. Манипулятор содержит механизмы замены и уборки отработанного погружного стакана. Кинематическая схема механизма замены обеспечивает перемещение сменного погружного стакана по заданной траектории к разливочному устройству промежуточного ковша. Смена стаканов...
Тип: Изобретение
Номер охранного документа: 0002639089
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fa36

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях...
Тип: Изобретение
Номер охранного документа: 0002639889
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fb13

Способ пирометаллургической переработки оксидных материалов

Изобретение относится к области черной металлургии. Способ включает подачу шихты, состоящей из перерабатываемого сырья, флюсов и углеродсодержащего материала, в плавильную зону двухзонной барботажной печи в предварительно расплавленные материал и флюс. Расплав передают в восстановительную зону,...
Тип: Изобретение
Номер охранного документа: 0002640110
Дата охранного документа: 26.12.2017
Показаны записи 151-160 из 233.
29.12.2017
№217.015.f66d

Система автоматического управления электрическим режимом плавильного агрегата с двумя источниками электронагрева с использованием интеллектуального датчика контроля агрегатного состояния расплавляемого металла

Изобретение относится к электрометаллургии и решает задачу управления режимом работы печного агрегата, содержащего два источника нагрева: сопротивлением и дугой постоянного тока. Технический результат - улучшение качества регулирования при нагреве материала в печи. Система автоматического...
Тип: Изобретение
Номер охранного документа: 0002630160
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f714

Манипулятор для замены погружного стакана на слябовой машине непрерывного литья заготовок

Изобретение относится к металлургии. Манипулятор содержит механизмы замены и уборки отработанного погружного стакана. Кинематическая схема механизма замены обеспечивает перемещение сменного погружного стакана по заданной траектории к разливочному устройству промежуточного ковша. Смена стаканов...
Тип: Изобретение
Номер охранного документа: 0002639089
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fa36

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях...
Тип: Изобретение
Номер охранного документа: 0002639889
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fb13

Способ пирометаллургической переработки оксидных материалов

Изобретение относится к области черной металлургии. Способ включает подачу шихты, состоящей из перерабатываемого сырья, флюсов и углеродсодержащего материала, в плавильную зону двухзонной барботажной печи в предварительно расплавленные материал и флюс. Расплав передают в восстановительную зону,...
Тип: Изобретение
Номер охранного документа: 0002640110
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fda7

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002638069
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0253

Способ получения альфа-оксида алюминия высокой чистоты

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в...
Тип: Изобретение
Номер охранного документа: 0002630212
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0276

Способ получения тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из борсодержащего алюминиевого...
Тип: Изобретение
Номер охранного документа: 0002630186
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02e5

Способ получения слитков и тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего...
Тип: Изобретение
Номер охранного документа: 0002630185
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02f0

Линейка прошивного стана

Изобретение относится к области производства бесшовных горячекатаных труб на станах винтовой прокатки. Линейка предназначена для повышения износостойкости рабочей поверхности линеек прошивного стана. Линейка имеет рабочую поверхность, включающую входной конус, пережим и выходной конус, и...
Тип: Изобретение
Номер охранного документа: 0002630188
Дата охранного документа: 05.09.2017
+ добавить свой РИД