×
25.08.2017
217.015.b994

Результат интеллектуальной деятельности: Способ высокотемпературной термомеханической обработки (α+β)-титановых сплавов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к термомеханической обработке (α+β)-титановых сплавов. Предложен способ высокотемпературной термомеханической обработки (α+β)-титанового сплава. Способ включает первую стадию нагрева до температуры ниже температуры полиморфного превращения сплава со скоростью 210-400°C/мин, деформацию при постоянной температуре, первую стадию охлаждения со скоростью 30-50°C/мин, вторую стадию нагрева до температуры на 60-100°C ниже температуры полиморфного превращения сплава, вторую стадию охлаждения и третью стадию нагрева до температуры на 470-510°C ниже температуры полиморфного превращения с последующим окончательным охлаждением. Перед первой стадией нагрева проводят предварительную термическую обработку в вакууме при температуре на 250-350°C ниже температуры полиморфного превращения сплава, первую стадию нагрева проводят до температуры на 310-350°C ниже температуры полиморфного превращения, деформацию при постоянной температуре проводят со степенью 5-10%, вторую стадию охлаждения проводят в два этапа, причем на первом этапе сплав охлаждают со скоростью 100-120°C/мин в течение 2-5 минут, а на втором этапе сплав охлаждают со скоростью 3000-3600°C/мин до комнатной температуры, после третьей стадии нагрева сплав выдерживают при температуре нагрева в течение 5-10 часов. Технический результат - повышение предела прочности σ обработанного сплава до 1200-1270 МПа, предела текучести σ до 1180-1250 МПа и предела выносливости σ до 410-450 МПа. 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к термомеханической обработке (α+β)-титановых сплавов, и может быть использовано в машиностроении и авиационной технике.

Как известно, параметры термической и термомеханической обработок значительно влияют на уровень механических свойств и эксплуатационных характеристик (α+β)-титановых сплавов.

Известен способ обработки заготовок, преимущественно крупногабаритных, из (α+β)-титановых сплавов, заключающийся в получении мелкозернистой микроструктуры посредством деформации при температурах ниже температуры полного полиморфного превращения (tm), при этом деформацию заготовки осуществляют по крайней мере в две стадии, причем на первой стадии заготовку нагревают до температуры, равной или выше температуры, соответствующей равному количественному соотношению фаз в сплаве (tα=β), и при этой температуре осуществляют по крайней мере часть деформации, на второй стадии деформации заготовку нагревают и деформируют при температуре ниже температуры tα=β (RU 2196189 C2, 10.01.2003).

Недостатком данного способа является анизотропия механических свойств обработанного сплава ввиду выраженных областей неоднородности его структуры, формирующейся в процессе деформации.

Известен способ термомеханической обработки (α+β)-титановых сплавов путем многократных нагревов, деформации и охлаждения, в котором с целью повышения прочности и вязкости разрушения сплавы нагревают до температуры на 70-150°C выше температуры полиморфного превращения со скоростью 1,3-1,5°C/с, деформируют со степенью 40-80% при этой температуре, охлаждают до температуры на 10-40°C ниже температуры полиморфного превращения со скоростью 1,6-2,0°C/с, причем в процессе охлаждения в (α+β)-области осуществляют деформацию на 4-14%, затем охлаждают до комнатной температуры со скоростью 0,8-0,9°C/с, нагревают до температуры на 10-40°C ниже температуры полиморфного превращения со скоростью 1,3-1,5°C/с, охлаждают до температуры на 100-140°C ниже температуры полиморфного превращения со скоростью 2,2-3,0°C/с и в процессе охлаждения подвергают деформации, после чего охлаждают до комнатной температуры со скоростью 5,5-7°C/с, нагревают до 450-550°C со скоростью 1,3-1,8°C/с, выдерживают 5-10 ч, деформируют и охлаждают со скоростью 1,3-1,8°C/с (SU 1039243 A1, 27.08.2004).

Недостатком данного способа является низкий уровень длительной прочности, так как в процессе нагревов и деформаций, описанных в способе, формируется крупнозернистая структура.

Известен также способ термомеханической обработки титановых сплавов, включающий нагрев со скоростью 60-70°/мин до температуры на 50-100°C ниже температуры полиморфного превращения, деформацию со степенью 50-65%, охлаждение в воде со скоростью 3000-3600°/мин, нагрев со скоростью 60-70°/мин до температуры на 440-490°C ниже температуры полиморфного превращения, выдержку в течение 10 ч и охлаждение со скоростью 60-70°/мин (Бернштейн М.Л. «Термомеханическая обработка металлов и сплавов», М.: Металлургия, том 2, 1969, страница 1153).

Термомеханическая обработка изделий из титановых сплавов вышеуказанным способом может вызывать значительные изменения их геометрии, в связи с чем данный способ мало применим для листовых полуфабрикатов.

Наиболее близким аналогом является способ термомеханической обработки титановых сплавов путем ступенчатого нагрева, горячей деформации и охлаждения. С целью повышения конструкционной прочности, пластичности и ударной вязкости нагрев ведут до температуры на 260-300°C ниже температуры полиморфного превращения со скоростью 210-400°/мин, деформируют при постоянной температуре со степенью деформации 0,3-4%, охлаждают со скоростью 30-50°/мин, нагревают до температуры на 60-100°C ниже температуры полиморфного превращения, охлаждают со скоростью 100-120°/мин, нагревают до температуры на 470-510°C ниже температуры полиморфного превращения и выдерживают при этой температуре (SU 1036069 A1, 27.08.2015).

Недостатком способа-прототипа является нестабильность прочностных свойств, а также низкий уровень прочности и выносливости обрабатываемых сплавов.

Технической задачей заявленного способа является повышение долговечности (α+β)-титановых сплавов и ресурса эксплуатации деталей и узлов летательных аппаратов, выполненных из них.

Техническим результатом заявленного способа является повышение предела прочности σв обработанного сплава до 1200-1270 МПа, предела текучести σт до 1180-1250 МПа и предела выносливости σ-1 (на базе 107 циклов нагружения, коэффициент концентратора напряжений kt=4) до 410-450 МПа.

Технический результат достигается способом высокотемпературной термомеханической обработки (α+β)-титанового сплава, включающим первую стадию нагрева до температуры ниже температуры полиморфного превращения сплава со скоростью 210-400°C/мин, деформацию при постоянной температуре, первую стадию охлаждения со скоростью 30-50°C/мин, вторую стадию нагрева до температуры на 60-100°C ниже температуры полиморфного превращения сплава, вторую стадию охлаждения и третью стадию нагрева до температуры на 470-510°C ниже температуры полиморфного превращения с последующим окончательным охлаждением, при этом перед первой стадией нагрева проводят предварительную термическую обработку в вакууме при температуре на 250-350°C ниже температуры полиморфного превращения сплава, первую стадию нагрева проводят до температуры на 310-350°C ниже температуры полиморфного превращения, деформацию при постоянной температуре проводят со степенью 5-10%, вторую стадию охлаждения проводят в два этапа, причем на первом этапе сплав охлаждают со скоростью 100-120°C/мин в течение 2-5 минут, а на втором этапе сплав охлаждают со скоростью 3000-3600°C/мин до комнатной температуры, после третьей стадии нагрева сплав выдерживают при температуре нагрева в течение 5-10 часов.

В процессе высокоскоростных нагревов, деформации при постоянной температуре и охлаждений с регламентированной скоростью достигается фрагментация деформированных зерен с образованием мелкозернистой ячеистой структуры. Предварительная термическая обработка в вакууме при температуре на 250-350°C ниже температуры полиморфного превращения способствует очищению поверхности сплава, допускает воздействие более высоких удельных давлений, позволяет повысить степень и снизить температуру деформации на последующей стадии. Выбранный температурный интервал термической обработки в вакууме позволяет избавиться от вредных примесей, таких как водород.

Снижение температуры на первой стадии нагрева до температуры на 310-350°C ниже температуры полиморфного превращения и повышение степени деформации до 5-10% способствуют получению более развитой дислокационной структуры. В процессе повторного высокоскоростного нагрева субзерна не успевают вырасти и α→β-перестройка происходит в пределах границ полигональной структуры. В процессе последующего охлаждения фиксируется метастабильная β-фаза.

Вторую стадию нагрева, исходя из глубины термообрабатываемого слоя, рекомендуется проводить без оправки токами высокой частоты в диапазоне 20-40 кГц.

Ступенчатое охлаждение после второй стадии нагрева по указанным выше режимам позволяет зафиксировать необходимое количество β-фазы. Подстуживание методом перемещения детали в индукторе с подачей сжатого (4 атм) воздуха, что соответствует скорости охлаждения 100-120°C/мин, в течение 2-5 минут исключает возможное коробление полуфабриката, которое может возникнуть в связи с резким изменением температуры. Охлаждение в воде позволяет достичь скорости охлаждения 3000-3600°C/мин, что повышает при этом стабильность β-фазы.

При установленной продолжительности выдержки 5-10 часов на последней стадии нагрева обеспечивается наиболее полный распад β-фазы, что способствует достижению высокого уровня механических свойств.

Примеры осуществления.

Предложенный способ был опробован при обработке листов толщиной 3 мм из сплава ВТ43 (примеры 1-2), температура полиморфного превращения Tпп которого составляет 910°C, и листа толщиной 3 мм из сплава ВТ23М (пример 3), температура полиморфного превращения Tпп которого составляет 920°C.

В вакуумной электропечи сопротивления ВЕГА-8 осуществляли нагрев листов из (α+β)-титанового сплавов марок ВТ43 и ВТ23М, охлаждение проводили, не вынимая из печи. Далее нагрев листов осуществляли в оправке индуктором, а их охлаждение в оправке проводили на воздухе. Нагрев на второй ступени проводили током высокой частоты 20 кГц без оправки, а охлаждение проводили сначала сжатым (4 атм) воздухом при перемещении детали в индукторе в течение 2-5 минут, а затем продолжали в воде. Нагрев на третьей стадии осуществляли в электропечи сопротивления.

Режимы термомеханической обработки листов из (α+β)-титановых сплавов приведены в таблице 1.

Из обработанных по описанным режимам листов вырезали образцы для проведения последующих испытаний на определение прочностных и усталостных свойств.

Предел прочности σв и предел текучести σт определяли при комнатной температуре по ГОСТ 1497-84 (испытания на растяжение).

Предел выносливости σ-1 (на базе 107 циклов нагружения, коэффициент концентратора напряжений kt=4) определяли при комнатной температуре по ГОСТ 25502-82 (испытания на усталость).

Сравнительные характеристики полученных значений предела прочности σв, предела текучести σт и предела выносливости σ-1 после обработки титанового сплава предложенным способом и способом-прототипом приведены в таблице 2.

Как видно из полученных данных, после обработки предложенным способом предел прочности возрастает на 9,1-15,45%, предел текучести - на 9,26-15,7%, а предел выносливости - на 7,9-15,79% по сравнению с обработкой способом-прототипом.

Таким образом, предложенный способ высокотемпературной термомеханической обработки может обеспечить повышение прочности конструкций и ресурс эксплуатации изделий из (α+β)-титановых сплавов.

Способ высокотемпературной термомеханической обработки (α+β)-титанового сплава, включающий первую стадию нагрева до температуры ниже температуры полиморфного превращения сплава со скоростью 210-400°С/мин, деформацию при постоянной температуре, первую стадию охлаждения со скоростью 30-50°С/мин, вторую стадию нагрева до температуры на 60-100°С ниже температуры полиморфного превращения сплава, вторую стадию охлаждения и третью стадию нагрева до температуры на 470-510°С ниже температуры полиморфного превращения с последующим окончательным охлаждением, отличающийся тем, что перед первой стадией нагрева проводят предварительную термическую обработку в вакууме при температуре на 250-350°С ниже температуры полиморфного превращения сплава, первую стадию нагрева проводят до температуры на 310-350°С ниже температуры полиморфного превращения, деформацию при постоянной температуре проводят со степенью 5-10%, вторую стадию охлаждения проводят в два этапа, причем на первом этапе сплав охлаждают со скоростью 100-120°С/мин в течение 2-5 минут, а на втором этапе сплав охлаждают со скоростью 3000-3600°С/мин до комнатной температуры, после нагрева на третьей стадии сплав выдерживают при температуре нагрева в течение 5-10 часов.
Источник поступления информации: Роспатент

Показаны записи 271-280 из 370.
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
29.03.2019
№219.016.f153

Вибропоглощающий слоистый материал

Изобретение относится к вибропоглощающему слоистому материалу для использования в качестве покрытий различных тонкостенных конструкций, работающих в широком диапазоне температур, в авиационной и аэрокосмической отраслях промышленности. Материал содержит синтетический волокнистый нетканый...
Тип: Изобретение
Номер охранного документа: 0002393095
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f154

Способ получения композиционного материала

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида Nb. Может быть использовано при изготовлении деталей для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, в...
Тип: Изобретение
Номер охранного документа: 0002393060
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f185

Способ получения композиционного материала

Изобретение относится к получению тугоплавких, стойких к удару композиционных материалов с интерметаллидной матрицей, используемых в авиационной, космической, судостроительной и других областях промышленности. Собирают пакет из слоев фольги из одного или более металлов, выбранных из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002394665
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f193

Препрег герметичного органопластика и изделие, выполненное из него

Изобретение относится к области создания конструкционных полимерных композиционных материалов на основе волокнистых наполнителей из арамидных нитей и полимерных связующих, которые могут использоваться в качестве герметичных обшивок сотовых панелей, а также монолитных деталей в машино-,...
Тип: Изобретение
Номер охранного документа: 0002395535
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
29.03.2019
№219.016.f33a

Полимерная композиция

Изобретение относится к негорючим полимерным композициям, применяемым для местного упрочнения конструкций, в том числе трехслойных сотовых панелей, в зонах установки крепежа, заделки торцов и заполнения пустот в деталях из полимерных композиционных материалов, используемых на наземном, морском...
Тип: Изобретение
Номер охранного документа: 0002330050
Дата охранного документа: 27.07.2008
29.03.2019
№219.016.f34a

Фенолоформальдегидное связующее, препрег на его основе и изделие, выполненное из него

Предлагаемое изобретение относится к фенолоформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий интерьера пассажирских самолетов, в судо-, автомобилестроении и железнодорожном транспорте. Предложены: фенолоформальдегидное...
Тип: Изобретение
Номер охранного документа: 0002333922
Дата охранного документа: 20.09.2008
29.03.2019
№219.016.f646

Состав для защитного покрытия

Изобретение относится к полимерным составам для получения защитных покрытий на основе эпоксидных связующих, для защиты конструкций из различных металлов и полимерных композиционных материалов. Состав включает: эпоксидную диановая смолу, полиамидный отвердитель, наполнители - мелкодисперсный...
Тип: Изобретение
Номер охранного документа: 0002402585
Дата охранного документа: 27.10.2010
Показаны записи 271-280 из 336.
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
+ добавить свой РИД