×
25.08.2017
217.015.b948

Способ определения трещинной пористости горных пород

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области геофизических исследований. В предлагаемом способе формируют набор образцов исследуемой породы, определяют общую пористость и плотность каждого из образцов в атмосферных условиях, исключают из дальнейшего исследования образцы с отличающимся минералогическим составом, для оставшихся образцов определяют скорость распространения продольной волны и общую пористость в образцах в условиях, моделирующих пластовые. После этого определяют скорость распространения продольной волны в минеральном скелете. Далее рассчитывают величину трещинной пористости для каждого из образцов по формуле:
Реферат Свернуть Развернуть

Изобретение относится к области геофизических исследований (петрофизики), в частности к ультразвуковым исследованиям горных пород, и может применяться для оценки трещинной пористости горных пород.

Известен способ определения трещинной пористости пород (патент РФ №2012021, G01V 1/40, опубл. 30.04.1994), заключающийся в проведении в изучаемом разрезе волнового акустического и гамма-гамма-каротажа. По данным каротажа определяют коэффициент сжимаемости пород для двух значений плотности заполняющей скважину промывочной жидкости. При этом плотность увеличивают на 15-20% в зависимости от глубины скважины и допустимой величины давления гидроразрыва пород. Коэффициент пористости пород определяют с учетом коэффициентов сжимаемости пород, определенных по двум замерам, коэффициента сжимаемости матрицы (блока) и изменения плотности бурового раствора перед повторным исследованием. Недостатком известного способа является невысокая точность, обусловленная отсутствием достоверных данных о коэффициенте сжимаемости матрицы и методов его определения в реальных условиях залегания пород, а также отсутствием надежных данных о зависимости коэффициента сжимаемости пласта от изменений плотности бурового раствора в скважине.

Наиболее близким к предложенному способу (прототипом) является способ определения трещинной пористости пород (патент РФ №2516392, G01V 1/28, опубл. 20.05.2014), в котором формируют набор образцов исследуемой породы, экспериментально определяют общую пористость каждого из упомянутых образцов в атмосферных условиях, определяют скорость распространения продольной волны и общую пористость в образцах исследуемой породы в условиях, моделирующих пластовые условия, после чего определяют скорость распространения продольной волны в минеральном скелете исследуемой породы с использованием зависимости скорости распространения продольной волны в образцах исследуемой породы от их общей пористости, определенных в условиях, моделирующих пластовые условия. Далее рассчитывают величину трещинной пористости для каждого из образцов исследуемой породы, после чего определяют поровую пористость как разницу между общей пористостью и трещинной пористостью. Недостатком указанного способа является определение скорости распространения продольной волны в минеральном скелете исследуемой породы статистическими методами. При этом из-за неоднородности минералогического состава исследуемых образцов получают отрицательные значения трещинной пористости, что не имеет физического смысла.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка способа, позволяющего определять трещинную и поровую пористости горных пород путем определения скорости распространения продольной волны в исследуемой горной породе.

Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является повышение точности и достоверности определения трещинной пористости горных пород.

Для достижения указанного технического результата в способе определения трещинной пористости горных пород путем определения скорости распространения продольной волны в исследуемой породе предварительно формируют набор образцов исследуемой породы, экспериментально определяют общую пористость и плотность каждого из упомянутых образцов в атмосферных условиях и с использованием полученной зависимости пористости от плотности исключают из дальнейшего исследования образцы с отличающимся минералогическим составом. Затем для оставшихся в наборе образцов экспериментально определяют скорость распространения продольной волны и общую пористость в условиях, моделирующих пластовые условия, после чего определяют скорость распространения продольной волны в минеральном скелете исследуемой породы с использованием полученной зависимости скорости распространения продольной волны в образцах исследуемой породы от их общей пористости, определенных в условиях, моделирующих пластовые условия. Далее рассчитывают величину трещинной пористости (Кп тр) для каждого из образцов исследуемой породы по формуле:

где Кп общ - экспериментально определенная общая пористость образца;

Vp изм - измеренная скорость распространения упругой продольной волны в образце;

Vp ск - скорость распространения продольной волны в минеральном скелете исследуемой породы,

после чего определяют поровую пористость как разницу между общей пористостью и трещинной пористостью.

На скорость распространения продольной волны при исследовании горной породы большое влияние оказывают образцы с отличающимся минералогическим составом (Дортман Н.Б. Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. М.: Недра, 1984. С. 455). В заявляемом способе предлагается на начальном этапе исследования исключать из набора образцов исследуемой породы образцы с существенно отличающимся минералогическим составом.

В горной породе поры и трещины образуют общую пористость:

где Кп пор - поровая пористость горной породы, в %;

Кп тр - трещинная пористость горной породы, в %.

Для исследования горной породы необходимо выяснить, какая доля общей пористости приходится на поры и какая - на трещины для каждого образца исследуемой породы. Использование понятия добротности и знание величины общей пористости образцов исследуемой горной породы позволяет проводить такое разделение.

Отношение измеренной скорости распространения продольных волн в образце исследуемой породы к скорости распространения продольных волн в минеральном скелете исследуемой породы (при Кп общ, равной нулю), выраженное в процентах, называется добротностью Q (Мори В. Механика горных пород применительно к проблемам разведки и добычи нефти. М.: Мир, 1994, с. 176-184) и характеризует воздействие пор и трещин на породу:

где Vp изм - измеренная скорость распространения продольной волны в образце исследуемой породы, в км/с;

Vp ск - скорость распространения продольной волны в минеральном скелете исследуемой породы, в км/с.

Как вытекает из выражения (2), при добротности, равной 100%, порода не имеет ни трещин, ни пор. Уменьшение значения добротности отражает наличие в горной породе трещин и пор.

Известна зависимость добротности Q от поровой пористости Кп пор

где Q - добротность горной породы, в %;

А также - зависимость добротности от трещинной пористости горной породы:

откуда вытекает зависимость добротности от общей пористости:

решая известное уравнение (5) относительно Кп тр, получаем формулу:

Подставляя в формулу (6) выражение для Q по формуле (2) и выражение для Кп пор по формуле (1), получаем конечную формулу для вычисления трещинной пористости:

На фиг. 1 показана зависимость плотности от пористости исследуемой породы.

На фиг. 2 - зависимость скорости распространения продольной волны от эффективного давления для образцов горных пород с различной общей пористостью.

На фиг. 3 - зависимость скорости распространения продольной волны от общей пористости для образцов исследуемой породы.

На фиг. 4 - зависимость скорости распространения продольной волны от общей пористости для образцов исследуемой породы, оставшихся в наборе после удаления образцов с отличающимся минералогическим составом.

Способ осуществляют следующим образом.

- Формируют набор образцов исследуемой породы.

- Определяют общую пористость и плотность для каждого из образцов исследуемой породы в атмосферных условиях методом жидкостенасыщения или газоволюметрическим методом.

- По полученным значениям строят график зависимости плотности от пористости для образцов исследуемой породы. Аппроксимируют полученную зависимость методом наименьших квадратов в Excel и получают линейную зависимость параметра у от параметра x (в данном случае плотности от пористости образцов). Степень достоверности аппроксимации определяется величиной, обозначаемой .

Чем ближе R2 к единице, тем выше достоверность получаемой зависимости (фиг. 1).

- По результатам анализа указанной зависимости выделяют и исключают из дальнейшего исследования образцы, значительно отличающиеся своим минералогическим составом: образцы, координаты которых на графике зависимости (фиг. 1) более чем на 2% отличаются от линии аппроксимации.

- Определяют общую пористость каждого из образцов в условиях, моделирующих пластовые. Общую пористость определяют посредством измерений объема жидкости, вытесненной из порового пространства образца при увеличении эффективного давления от 0,1 МПа до давления в пласте (обычно более 15 МПа), и с учетом объема образца по формуле:

где Кп общ пл - общая пористость образца в условиях, моделирующих пластовые, %;

Кп общ атм - общая пористость образца в атмосферных условиях, %;

ΔVпор - объем жидкости, вытесненной из порового пространства образца при переходе от атмосферных условий к условиям, моделирующим пластовые, см3;

Voбp - объем образца, см3.

- Определяют скорость распространения упругой продольной волны для каждого из образцов исследуемой породы в условиях, моделирующих пластовые.

Общую пористость (Кп общ пл) и скорость распространения продольной волны (Vp пл) в условиях, моделирующих пластовые, определяют экспериментально с помощью любой установки, позволяющей моделировать пластовые условия и определять общую пористость и скорость распространения упругой продольной волны в исследуемой породе. На установке моделирования пластовых условий изменяют напряженное состояние образцов исследуемой породы путем создания всестороннего давления Рвс, равного литостатическому давлению, и порового давления Рпор, равного давлению флюида (газ, жидкость) в пласте. При этом создают эффективное давление Рэф, равное их разности. При достаточно больших значениях эффективного давления (40,0 МПа и более) скорость распространения продольной волны в образцах достигает максимума (фиг. 2).

- Определяют скорость распространения продольной волны в минеральном скелете исследуемой породы (общая пористость равна нулю), для чего аппроксимируют зависимость скорости распространения продольной волны от общей пористости, полученную по измеренным величинам общей пористости и скорости распространения продольной волны в образцах исследуемой породы в условиях, моделирующих пластовые, и получают линейную зависимость:

где А - коэффициент, характеризующий интенсивность изменения скорости распространения продольной волны от общей пористости образцов. Скорость распространения продольной волны в минеральном скелете исследуемой породы графически определяется как точка пересечения линии аппроксимации с вертикальной осью координат и численно равна величине свободного члена в линейной зависимости (фиг. 3).

Для мономинеральной горной породы возможно использование известной из справочной литературы скорости распространения продольной волны в этом минерале, определенной при условии отсутствия в нем трещин, дефектов и вкраплений других минералов.

- Определяют величину трещинной пористости для каждого из образцов исследуемой породы. Для этого используют уравнение (7) зависимости трещинной пористости от измеренной общей пористости и отношения измеренной скорости распространения продольной волны в образце исследуемой породы к скорости распространения продольной волны в минеральном скелете исследуемой породы, полученных в условиях, моделирующих пластовые.

- Определяют величину поровой пористости как разницу между общей пористостью и трещинной пористостью для каждого из образцов исследуемой породы в соответствии с уравнением (1) в условиях, моделирующих пластовые.

Пример осуществления способа

- Сформировали набор из 24 образцов песчаника.

- Определили общую пористость (Кп общ атм) и плотность (δ) каждого из образцов методом жидкостенасыщения (ГОСТ 26450.1-85) при атмосферных условиях (столбцы 2 и 3 таблицы).

- По полученным значениям построили график зависимости общей пористости от плотности (фиг. 1).

- По результатам анализа полученной зависимости выделили образцы, подлежащие исключению из дальнейшего исследования (образцы №3 и №4 в таблице).

- Для сравнения результатов вначале провели исследование без исключения из набора указанных образцов.

- С помощью установки ПУМА-650 определили общую пористость и скорость распространения продольной волны для каждого из образцов в термобарических условиях, моделирующих пластовые (всестороннее давление Рвс=50 МПа, поровое давление Рпор=13 МПа, температура Т=22°С), при этом точность определения: пористости - ±0,01%, скорости распространения продольной волны - ±0,002 км/с (столбцы 4 и 5 таблицы).

- Определили скорость распространения продольной волны в минеральном скелете исследуемого песчаника (Vp ск), используя линейную зависимость (9) (при А=0,103) и полученную зависимость скорости распространения продольной волны в образцах от общей пористости всех образцов в условиях, моделирующих пластовые (фиг. 3). Полученная Vp ск=5,864 км/с при исследовании полного набора образцов (столбец 5 таблицы).

- Определили величину трещинной пористости (Кп тр) в пластовых условиях для каждого из образцов исследуемого песчаника, используя формулу (7) (столбец 6 таблицы). При этом для некоторых образцов получены отрицательные значения трещинной пористости, что обусловлено неточным определением (заниженным значением) скорости распространения продольной волны в минеральном скелете породы.

- Определили величину поровой пористости (Кп пор), используя уравнение (1), для каждого из исследуемых образцов (столбец 7 таблицы).

Далее для получения уточненных значений скорости распространения продольной волны провели исследование, исключив образцы №3 и №4 из полного набора образцов песчаника.

- Построили график зависимости скорости распространения продольной волны от пористости и определили уточненную скорость распространения продольной волны в минеральном скелете песчаника (при общей пористости равной нулю) Vp ск=6,080 км/с (фиг. 4).

- Определили величину трещинной пористости (Кп тр) в пластовых условиях для каждого из образцов исследуемого песчаника, используя формулу (7) (столбец 8 таблицы), причем в таблице отсутствуют отрицательные значения трещинной пористости за счет исключения образцов №3 и №4, которые обусловили погрешность в определении трещинной пористости.

- Определили величину поровой пористости (Кп пор), используя уравнение (1), для каждого из оставшихся в наборе образцов исследуемой породы (столбец 9 таблицы).

Таким образом, в предлагаемом способе для определения трещинной пористости горной породы используют уточненное значение скорости распространения продольной волны в минеральном скелете, полученное за счет исключения на начальном этапе исследования образцов исследуемой породы с отличающимся минералогическим составом, что позволяет получить более точные и достоверные результаты исследования.


Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Источник поступления информации: Роспатент

Показаны записи 71-80 из 162.
29.12.2017
№217.015.fbae

Способ создания и эксплуатации оперативного подземного хранилища природного газа, обогащенного гелием

Изобретение относится к области газовой промышленности и предназначено для создания и эксплуатации подземных хранилищ природного газа, обогащенного гелием (ПХПГОГ). В ПХПГОГ, на которых в купольной части пласта-коллектора сооружены эксплуатационные скважины, нагнетательные скважины на заранее...
Тип: Изобретение
Номер охранного документа: 0002638053
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fd4f

Способ обезвреживания и утилизации нефтесодержащего шлама

Способ обезвреживания и утилизации нефтесодержащего шлама включает смешивание негашеной извести с нефтесодержащим шламом и поверхностно-активным веществом, затем осуществляют гашение извести путем добавления воды в количестве, необходимом для полного гашения извести, после гашения извести...
Тип: Изобретение
Номер охранного документа: 0002638019
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0ea8

Ингибирующий буровой раствор (варианты)

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении набухающих неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств раствора и обеспечение стабильности...
Тип: Изобретение
Номер охранного документа: 0002633468
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0fb2

Установка абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка...
Тип: Изобретение
Номер охранного документа: 0002633563
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1206

Способ определения метанола в воде

Изобретение относится к аналитической химии и может быть использовано для определения метанола в воде методом газожидкостной хроматографии. Для этого проводят подготовку газового хроматографа с пламенно-ионизационным детектором к работе. Для лучшего разделения компонентов применяют насадочную...
Тип: Изобретение
Номер охранного документа: 0002634260
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1b47

Установка подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка подготовки...
Тип: Изобретение
Номер охранного документа: 0002635946
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.2172

Стенд для моделирования процессов течения наклонно-направленных газожидкостных потоков

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений. Техническим результатом является повышение точности и достоверности проводимых на стенде исследований. Предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002641337
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2aba

Стенд для испытания обетонированных труб

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной...
Тип: Изобретение
Номер охранного документа: 0002642881
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3017

Способ подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645102
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3022

Способ абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645124
Дата охранного документа: 15.02.2018
Показаны записи 71-80 из 91.
29.12.2017
№217.015.fbae

Способ создания и эксплуатации оперативного подземного хранилища природного газа, обогащенного гелием

Изобретение относится к области газовой промышленности и предназначено для создания и эксплуатации подземных хранилищ природного газа, обогащенного гелием (ПХПГОГ). В ПХПГОГ, на которых в купольной части пласта-коллектора сооружены эксплуатационные скважины, нагнетательные скважины на заранее...
Тип: Изобретение
Номер охранного документа: 0002638053
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fd4f

Способ обезвреживания и утилизации нефтесодержащего шлама

Способ обезвреживания и утилизации нефтесодержащего шлама включает смешивание негашеной извести с нефтесодержащим шламом и поверхностно-активным веществом, затем осуществляют гашение извести путем добавления воды в количестве, необходимом для полного гашения извести, после гашения извести...
Тип: Изобретение
Номер охранного документа: 0002638019
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0ea8

Ингибирующий буровой раствор (варианты)

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении набухающих неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств раствора и обеспечение стабильности...
Тип: Изобретение
Номер охранного документа: 0002633468
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0fb2

Установка абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка...
Тип: Изобретение
Номер охранного документа: 0002633563
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1206

Способ определения метанола в воде

Изобретение относится к аналитической химии и может быть использовано для определения метанола в воде методом газожидкостной хроматографии. Для этого проводят подготовку газового хроматографа с пламенно-ионизационным детектором к работе. Для лучшего разделения компонентов применяют насадочную...
Тип: Изобретение
Номер охранного документа: 0002634260
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1b47

Установка подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка подготовки...
Тип: Изобретение
Номер охранного документа: 0002635946
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.1f59

Способ газодинамического исследования скважины для низкопроницаемых коллекторов

Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических исследований (ГДИ) скважин на месторождениях с низкими фильтрационно-емкостными свойствами. Технический результат, достигаемый изобретением, - повышение эффективности проведения...
Тип: Изобретение
Номер охранного документа: 0002641145
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2172

Стенд для моделирования процессов течения наклонно-направленных газожидкостных потоков

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений. Техническим результатом является повышение точности и достоверности проводимых на стенде исследований. Предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002641337
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2aba

Стенд для испытания обетонированных труб

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной...
Тип: Изобретение
Номер охранного документа: 0002642881
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3017

Способ подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645102
Дата охранного документа: 15.02.2018
+ добавить свой РИД