×
25.08.2017
217.015.b948

Способ определения трещинной пористости горных пород

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геофизических исследований. В предлагаемом способе формируют набор образцов исследуемой породы, определяют общую пористость и плотность каждого из образцов в атмосферных условиях, исключают из дальнейшего исследования образцы с отличающимся минералогическим составом, для оставшихся образцов определяют скорость распространения продольной волны и общую пористость в образцах в условиях, моделирующих пластовые. После этого определяют скорость распространения продольной волны в минеральном скелете. Далее рассчитывают величину трещинной пористости для каждого из образцов по формуле:

Изобретение относится к области геофизических исследований (петрофизики), в частности к ультразвуковым исследованиям горных пород, и может применяться для оценки трещинной пористости горных пород.

Известен способ определения трещинной пористости пород (патент РФ №2012021, G01V 1/40, опубл. 30.04.1994), заключающийся в проведении в изучаемом разрезе волнового акустического и гамма-гамма-каротажа. По данным каротажа определяют коэффициент сжимаемости пород для двух значений плотности заполняющей скважину промывочной жидкости. При этом плотность увеличивают на 15-20% в зависимости от глубины скважины и допустимой величины давления гидроразрыва пород. Коэффициент пористости пород определяют с учетом коэффициентов сжимаемости пород, определенных по двум замерам, коэффициента сжимаемости матрицы (блока) и изменения плотности бурового раствора перед повторным исследованием. Недостатком известного способа является невысокая точность, обусловленная отсутствием достоверных данных о коэффициенте сжимаемости матрицы и методов его определения в реальных условиях залегания пород, а также отсутствием надежных данных о зависимости коэффициента сжимаемости пласта от изменений плотности бурового раствора в скважине.

Наиболее близким к предложенному способу (прототипом) является способ определения трещинной пористости пород (патент РФ №2516392, G01V 1/28, опубл. 20.05.2014), в котором формируют набор образцов исследуемой породы, экспериментально определяют общую пористость каждого из упомянутых образцов в атмосферных условиях, определяют скорость распространения продольной волны и общую пористость в образцах исследуемой породы в условиях, моделирующих пластовые условия, после чего определяют скорость распространения продольной волны в минеральном скелете исследуемой породы с использованием зависимости скорости распространения продольной волны в образцах исследуемой породы от их общей пористости, определенных в условиях, моделирующих пластовые условия. Далее рассчитывают величину трещинной пористости для каждого из образцов исследуемой породы, после чего определяют поровую пористость как разницу между общей пористостью и трещинной пористостью. Недостатком указанного способа является определение скорости распространения продольной волны в минеральном скелете исследуемой породы статистическими методами. При этом из-за неоднородности минералогического состава исследуемых образцов получают отрицательные значения трещинной пористости, что не имеет физического смысла.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка способа, позволяющего определять трещинную и поровую пористости горных пород путем определения скорости распространения продольной волны в исследуемой горной породе.

Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является повышение точности и достоверности определения трещинной пористости горных пород.

Для достижения указанного технического результата в способе определения трещинной пористости горных пород путем определения скорости распространения продольной волны в исследуемой породе предварительно формируют набор образцов исследуемой породы, экспериментально определяют общую пористость и плотность каждого из упомянутых образцов в атмосферных условиях и с использованием полученной зависимости пористости от плотности исключают из дальнейшего исследования образцы с отличающимся минералогическим составом. Затем для оставшихся в наборе образцов экспериментально определяют скорость распространения продольной волны и общую пористость в условиях, моделирующих пластовые условия, после чего определяют скорость распространения продольной волны в минеральном скелете исследуемой породы с использованием полученной зависимости скорости распространения продольной волны в образцах исследуемой породы от их общей пористости, определенных в условиях, моделирующих пластовые условия. Далее рассчитывают величину трещинной пористости (Кп тр) для каждого из образцов исследуемой породы по формуле:

где Кп общ - экспериментально определенная общая пористость образца;

Vp изм - измеренная скорость распространения упругой продольной волны в образце;

Vp ск - скорость распространения продольной волны в минеральном скелете исследуемой породы,

после чего определяют поровую пористость как разницу между общей пористостью и трещинной пористостью.

На скорость распространения продольной волны при исследовании горной породы большое влияние оказывают образцы с отличающимся минералогическим составом (Дортман Н.Б. Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика. М.: Недра, 1984. С. 455). В заявляемом способе предлагается на начальном этапе исследования исключать из набора образцов исследуемой породы образцы с существенно отличающимся минералогическим составом.

В горной породе поры и трещины образуют общую пористость:

где Кп пор - поровая пористость горной породы, в %;

Кп тр - трещинная пористость горной породы, в %.

Для исследования горной породы необходимо выяснить, какая доля общей пористости приходится на поры и какая - на трещины для каждого образца исследуемой породы. Использование понятия добротности и знание величины общей пористости образцов исследуемой горной породы позволяет проводить такое разделение.

Отношение измеренной скорости распространения продольных волн в образце исследуемой породы к скорости распространения продольных волн в минеральном скелете исследуемой породы (при Кп общ, равной нулю), выраженное в процентах, называется добротностью Q (Мори В. Механика горных пород применительно к проблемам разведки и добычи нефти. М.: Мир, 1994, с. 176-184) и характеризует воздействие пор и трещин на породу:

где Vp изм - измеренная скорость распространения продольной волны в образце исследуемой породы, в км/с;

Vp ск - скорость распространения продольной волны в минеральном скелете исследуемой породы, в км/с.

Как вытекает из выражения (2), при добротности, равной 100%, порода не имеет ни трещин, ни пор. Уменьшение значения добротности отражает наличие в горной породе трещин и пор.

Известна зависимость добротности Q от поровой пористости Кп пор

где Q - добротность горной породы, в %;

А также - зависимость добротности от трещинной пористости горной породы:

откуда вытекает зависимость добротности от общей пористости:

решая известное уравнение (5) относительно Кп тр, получаем формулу:

Подставляя в формулу (6) выражение для Q по формуле (2) и выражение для Кп пор по формуле (1), получаем конечную формулу для вычисления трещинной пористости:

На фиг. 1 показана зависимость плотности от пористости исследуемой породы.

На фиг. 2 - зависимость скорости распространения продольной волны от эффективного давления для образцов горных пород с различной общей пористостью.

На фиг. 3 - зависимость скорости распространения продольной волны от общей пористости для образцов исследуемой породы.

На фиг. 4 - зависимость скорости распространения продольной волны от общей пористости для образцов исследуемой породы, оставшихся в наборе после удаления образцов с отличающимся минералогическим составом.

Способ осуществляют следующим образом.

- Формируют набор образцов исследуемой породы.

- Определяют общую пористость и плотность для каждого из образцов исследуемой породы в атмосферных условиях методом жидкостенасыщения или газоволюметрическим методом.

- По полученным значениям строят график зависимости плотности от пористости для образцов исследуемой породы. Аппроксимируют полученную зависимость методом наименьших квадратов в Excel и получают линейную зависимость параметра у от параметра x (в данном случае плотности от пористости образцов). Степень достоверности аппроксимации определяется величиной, обозначаемой .

Чем ближе R2 к единице, тем выше достоверность получаемой зависимости (фиг. 1).

- По результатам анализа указанной зависимости выделяют и исключают из дальнейшего исследования образцы, значительно отличающиеся своим минералогическим составом: образцы, координаты которых на графике зависимости (фиг. 1) более чем на 2% отличаются от линии аппроксимации.

- Определяют общую пористость каждого из образцов в условиях, моделирующих пластовые. Общую пористость определяют посредством измерений объема жидкости, вытесненной из порового пространства образца при увеличении эффективного давления от 0,1 МПа до давления в пласте (обычно более 15 МПа), и с учетом объема образца по формуле:

где Кп общ пл - общая пористость образца в условиях, моделирующих пластовые, %;

Кп общ атм - общая пористость образца в атмосферных условиях, %;

ΔVпор - объем жидкости, вытесненной из порового пространства образца при переходе от атмосферных условий к условиям, моделирующим пластовые, см3;

Voбp - объем образца, см3.

- Определяют скорость распространения упругой продольной волны для каждого из образцов исследуемой породы в условиях, моделирующих пластовые.

Общую пористость (Кп общ пл) и скорость распространения продольной волны (Vp пл) в условиях, моделирующих пластовые, определяют экспериментально с помощью любой установки, позволяющей моделировать пластовые условия и определять общую пористость и скорость распространения упругой продольной волны в исследуемой породе. На установке моделирования пластовых условий изменяют напряженное состояние образцов исследуемой породы путем создания всестороннего давления Рвс, равного литостатическому давлению, и порового давления Рпор, равного давлению флюида (газ, жидкость) в пласте. При этом создают эффективное давление Рэф, равное их разности. При достаточно больших значениях эффективного давления (40,0 МПа и более) скорость распространения продольной волны в образцах достигает максимума (фиг. 2).

- Определяют скорость распространения продольной волны в минеральном скелете исследуемой породы (общая пористость равна нулю), для чего аппроксимируют зависимость скорости распространения продольной волны от общей пористости, полученную по измеренным величинам общей пористости и скорости распространения продольной волны в образцах исследуемой породы в условиях, моделирующих пластовые, и получают линейную зависимость:

где А - коэффициент, характеризующий интенсивность изменения скорости распространения продольной волны от общей пористости образцов. Скорость распространения продольной волны в минеральном скелете исследуемой породы графически определяется как точка пересечения линии аппроксимации с вертикальной осью координат и численно равна величине свободного члена в линейной зависимости (фиг. 3).

Для мономинеральной горной породы возможно использование известной из справочной литературы скорости распространения продольной волны в этом минерале, определенной при условии отсутствия в нем трещин, дефектов и вкраплений других минералов.

- Определяют величину трещинной пористости для каждого из образцов исследуемой породы. Для этого используют уравнение (7) зависимости трещинной пористости от измеренной общей пористости и отношения измеренной скорости распространения продольной волны в образце исследуемой породы к скорости распространения продольной волны в минеральном скелете исследуемой породы, полученных в условиях, моделирующих пластовые.

- Определяют величину поровой пористости как разницу между общей пористостью и трещинной пористостью для каждого из образцов исследуемой породы в соответствии с уравнением (1) в условиях, моделирующих пластовые.

Пример осуществления способа

- Сформировали набор из 24 образцов песчаника.

- Определили общую пористость (Кп общ атм) и плотность (δ) каждого из образцов методом жидкостенасыщения (ГОСТ 26450.1-85) при атмосферных условиях (столбцы 2 и 3 таблицы).

- По полученным значениям построили график зависимости общей пористости от плотности (фиг. 1).

- По результатам анализа полученной зависимости выделили образцы, подлежащие исключению из дальнейшего исследования (образцы №3 и №4 в таблице).

- Для сравнения результатов вначале провели исследование без исключения из набора указанных образцов.

- С помощью установки ПУМА-650 определили общую пористость и скорость распространения продольной волны для каждого из образцов в термобарических условиях, моделирующих пластовые (всестороннее давление Рвс=50 МПа, поровое давление Рпор=13 МПа, температура Т=22°С), при этом точность определения: пористости - ±0,01%, скорости распространения продольной волны - ±0,002 км/с (столбцы 4 и 5 таблицы).

- Определили скорость распространения продольной волны в минеральном скелете исследуемого песчаника (Vp ск), используя линейную зависимость (9) (при А=0,103) и полученную зависимость скорости распространения продольной волны в образцах от общей пористости всех образцов в условиях, моделирующих пластовые (фиг. 3). Полученная Vp ск=5,864 км/с при исследовании полного набора образцов (столбец 5 таблицы).

- Определили величину трещинной пористости (Кп тр) в пластовых условиях для каждого из образцов исследуемого песчаника, используя формулу (7) (столбец 6 таблицы). При этом для некоторых образцов получены отрицательные значения трещинной пористости, что обусловлено неточным определением (заниженным значением) скорости распространения продольной волны в минеральном скелете породы.

- Определили величину поровой пористости (Кп пор), используя уравнение (1), для каждого из исследуемых образцов (столбец 7 таблицы).

Далее для получения уточненных значений скорости распространения продольной волны провели исследование, исключив образцы №3 и №4 из полного набора образцов песчаника.

- Построили график зависимости скорости распространения продольной волны от пористости и определили уточненную скорость распространения продольной волны в минеральном скелете песчаника (при общей пористости равной нулю) Vp ск=6,080 км/с (фиг. 4).

- Определили величину трещинной пористости (Кп тр) в пластовых условиях для каждого из образцов исследуемого песчаника, используя формулу (7) (столбец 8 таблицы), причем в таблице отсутствуют отрицательные значения трещинной пористости за счет исключения образцов №3 и №4, которые обусловили погрешность в определении трещинной пористости.

- Определили величину поровой пористости (Кп пор), используя уравнение (1), для каждого из оставшихся в наборе образцов исследуемой породы (столбец 9 таблицы).

Таким образом, в предлагаемом способе для определения трещинной пористости горной породы используют уточненное значение скорости распространения продольной волны в минеральном скелете, полученное за счет исключения на начальном этапе исследования образцов исследуемой породы с отличающимся минералогическим составом, что позволяет получить более точные и достоверные результаты исследования.


Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Способ определения трещинной пористости горных пород
Источник поступления информации: Роспатент

Показаны записи 31-40 из 162.
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
Показаны записи 31-40 из 91.
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
+ добавить свой РИД