×
25.08.2017
217.015.b8c6

Результат интеллектуальной деятельности: Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения

Вид РИД

Изобретение

Аннотация: Изобретение относится к гелиотехнике и к конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты. Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения состоит из одной ветви параболоцилиндрического концентратора солнечного излучения и линейчатого фотоприемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль параболоцилиндрической оси, концентратор выполнен с зеркальной внутренней поверхностью отражения, форма отражающей поверхности концентратора соответствует условию равномерной, вдоль и перпендикулярно параболоцилиндрической оси, освещенности поверхностей фотоприемника, размещенного перед фокусом и выполненного в виде трех линеек из соединенных последовательно-параллельно фотоэлектрических преобразователей. Фотоприемник имеет трапецеидальную форму в поперечном сечении и устройство протока теплоносителя. Техническим результатом является обеспечение работы теплофотоэлектрического приемника солнечного модуля при средних концентрациях и равномерном освещении, нагрева теплоносителя, например воды, и снижения стоимости вырабатываемой энергии. 2 з.п. ф-лы, 8 ил.

Изобретение относится к гелиотехнике и конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты.

Известен солнечный модуль с концентратором, содержащий основной линейно-фокусирующий параболоцилиндрический зеркальный отражатель, выполненный из двух разновеликих частей в виде одной ветви параболоцилиндрического отражателя со вторым полуцилиндрическим зеркальным отражателем, и фотоэлектрический приемник, отличающийся тем, что приемник излучения выполнен из стеклянной цилиндрической трубы и встроенного внутрь плоского стеклопакета фотоэлектрического приемника с солнечными элементами.

Наиболее близким по технической сущности к предлагаемому изобретению относится солнечный модуль с концентратором, содержащий основной линейно-фокусирующий параболоцилиндрический зеркальный отражатель и приемник в виде полосы, установленный параллельно фокальной оси основного отражателя, основной зеркальный отражатель выполнен в виде одной ветви параболоцилиндрического отражателя, снабжен вторым полуцилиндрическим зеркальным отражателем, а также третьим зеркальным полуцилиндрическим отражателем, причем третий зеркальный отражатель снабжен устройством поворота вокруг своей оси (патент RU 2206837, БИ 2003 №17).

Недостатками известных солнечных модулей являются:

- снижение оптического кпд модуля вследствие многократного, не менее 3-х раз на каждом концентраторе, отражения солнечных лучей от концентраторов, а также вследствие поглощения отраженных лучей при прохождении через ограждающие ФЭП стеклянные элементы, следовательно, снижение и общего кпд преобразования солнечной энергии в тепловую и электрическую;

- усложнение конструкции модуля;

- сложность юстировки 2-3 концентраторов и приемников концентрированного излучения;

- затенение дополнительными концентраторами основного.

Задачей предлагаемого изобретения является обеспечение работы теплофотоэлектрического приемника солнечного модуля при средних концентрациях и равномерном освещении его части - фотоэлектрического приемника, нагрева теплоносителя (воды) и снижения стоимости вырабатываемой энергии.

В результате использования предлагаемого изобретения на трех гранях трапецеидального в сечении теплофотоэлектрического приемника с устройством проточной воды формируется равномерная освещенность концентрированным солнечным излучением, вырабатывая электрическую и тепловую энергию с более высоким КПД, нагревая проточную воду.

Вышеуказанный технический результат достигается тем, что солнечный модуль с асимметричным параболоцилиндрическим концентратором, состоящий из одной ветви параболоцилиндрического концентратора солнечного излучения и линейчатого фотоприемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, содержит асимметричный из одной ветви концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения, форма отражающей поверхности концентратора соответствует условию равномерной, вдоль и перпендикулярно параболоцилиндрической оси, освещенности поверхностей фотоприемника, размещенного перед фокусом параболы и выполненного в виде трех линеек из соединенных последовательно-параллельно фотоэлектрических преобразователей, в составе фотоприемника трапецеидальной формы в поперечном сечении с устройством протока теплоносителя;

Солнечный модуль установлен на опоре, снабженной системой ориентации на Солнце.

Солнечный модуль снабжен системой крепления с устройством перемещения фотоприемника для изменения концентрации на его гранях отраженного солнечного потока. Сущность предлагаемого изобретения поясняется фиг. 1, 2, 3, 4, 5, 6.

На фиг. 1 представлена схема конструкции солнечного модуля с асимметричным параболоцилиндрическим концентратором и теплофотоэлектрическим приемником трапецеидальной формы в поперечном сечении с устройством протока теплоносителя.

На фиг. 2 представлена схема хода лучей от асимметричного параболоцилиндрического концентратора ABCD до трех обращенных к концентратору граней теплофотоэлектрического приемника трапецеидальной формы (ТФПТ).

На фиг. 3 представлен график распределение концентрации освещенности и углов падения солнечного излучения по ширине фокального пятна верхней поверхности ТФПТ.

На фиг. 4 представлен график распределения концентрации освещенности и углов падения солнечного излучения по ширине фокального пятна средней поверхности ТФПТ.

На фиг. 5 представлен график распределения концентрации освещенности и углов падения солнечного излучения по ширине фокального пятна нижней поверхности ТФПТ.

На фиг. 6 представлена BAX трапецеидального фотоприемника модуля с тремя матричными высоковольтными параллельно соединенными фотопреобразователями размерами 4×1 см при солнечном излучении 888 Вт/м2. Коэффициент заполнения BAX m=0,660.

На фиг. 7 представлена BAX трапецеидального фотоприемника модуля с тремя высоковольтными параллельно соединенными фотопреобразователями размерами 4×1 см при солнечном излучении 888 Вт/м2. Средняя концентрация на фотоприемнике Кср=22,5 крат, коэффициент заполнения BAX m=0,728.

На фиг. 8 представлены расчетные зависимости характеристик солнечного модуля: кпд ηt, расхода воды от температуры.

Асимметричный параболоцилиндрический концентратор 1 солнечного модуля с расчетным рабочим профилем концентрирует солнечное излучение на трех гранях размещенного перед фокальной областью теплофотоэлектрического приемника: лучи от верхней части AB концентратора приходят на верхнюю грань, лучи от средней части BC концентратора приходят на среднюю грань, а лучи от нижней части CD концентратора приходят на нижнюю грань теплофотоэлектрического приемника.

На фиг. 1 показана схема конструкции солнечного модуля с асимметричным параболоцилиндрическим концентратором 1 с ребрами жесткости 5 и теплофотоэлектрическим приемником 2 в виде трубы трапецеидальной формы в поперечном сечении с ФЭП на трех ее гранях, с устройствами протока теплоносителя (воды) со штуцерами 6, крепления 3 теплофотоэлектрического приемника, опоры 4 солнечного модуля.

Асимметричный параболоцилиндрический концентратор имеет форму полуветви параболы, а приемниками концентрированного излучения являются боковые и нижняя, обращенная к концентратору, грани трапецеидального в сечении канала, на которых крепятся ФЭП. Охлаждение - принудительное, протоком теплоносителя через канал, и естественное, теплообменом с окружающей средой.

На фиг. 2 представлена схема хода лучей от асимметричного параболоцилиндрического концентратора до трех обращенных к концентратору граней теплофотоэлектрического приемника трапецеидальной формы (ТФПТ) шириной dн, dcp, dв, конкретно 40×40×40 мм. Три из четырех граней ТФПТ освещаются каждая своей частью концентратора. Все четыре грани обмениваются теплом с окружающей средой.

Расчетный рабочий профиль отражающей поверхности асимметричного параболоцилиндрического концентратора и координат теплофотоэлектрического приемника выполнен по приведенным ниже зависимостям.

Верхняя грань освещается частью концентратора с граничными координатами {Хв, Ув; Х, У).

Значения координат Хвn, Увn определяются по формулам:

где δn=(ϕ+ξ)n/no, n=0,1…no, - фокусное расстояние параболы, а координаты X, Y определяются шириной концентратора.

Распределение концентрации освещенности по ширине фокального пятна на верхней грани ТФПТ определяется как:

где

Распределение концентрации освещенности и углов падения концентрированного солнечного излучения по ширине фокального пятна на верхней грани ТФПТ с шириной граней dн, dcp, dв, конкретно 40×40×40 мм, показано на фиг. 3.

Средняя грань освещается частью концентратора с граничными координатами {Хн, Ун; Хв, Ув}. Значения координат концентратора в этой области Хср, Уср определяются по формулам

Распределение концентрации освещенности и углов падения солнечного излучения по ширине фокального пятна на средней грани ТФПТ определяется по аналогии с формулами (3-6) и представлено на фиг. 4.

Нижняя грань освещается частью концентратора с граничными координатами {Хн, Ун; 0,0}. Значения координат концентратора в этой области Хнn, Унn определяются по формулам

Распределение концентрации освещенности и углов падения солнечного излучения по ширине фокального пятна на нижней поверхности ТФПТ определяется в соответствии с формулами

и представлено на фиг. 5.

Из приведенных характеристик на фиг. 3, 4, 5 видно, что изменение концентрации освещенности по ширине граней фотоэлектрического приемника не превышает 40%, что существенно не влияет на электрофизические и тепловые характеристики солнечного модуля.

Изменять концентрацию освещенности теплофотоэлектрического приемника 2 можно, перемещая приемник параллельно относительно расчетной позиции на фиг. 2.

Расчетным способом получены следующие средние концентрации, крат, на поверхностях теплофотоэлектрического приемника, облучаемых дугами концентратора: AB - 17,5, BC - 19,5, CD - 35. Такие концентрации допустимы для высоковольтных планарных ФЭП. Экспериментально проведены испытания трех высоковольтных планарных фотоэлементов размером 40×10 мм каждый, смонтированных на трех гранях теплофотоэлектрического приемника. Полученные BAX без концентрации солнечного излучения представлены на фиг. 6, а с концентрацией - на фиг. 7. Из приведенных BAX (фиг. 6 и 7) следует, что матричные высоковольтные элементы при концентрированном облучении более эффективны, чем при низком освещении солнечным излучением, что показывают значения коэффициентов заполнения BAX m. В рабочей точке BAX фиг. 7 электрическая мощность в ~19 раз больше, чем на фиг. 6, которая равна P1=1,175 Вт. При пересчете количества матричных элементов с ηфэ=0,12, на всю линейку при освещенности 700 Вт/м2 и ηопт=0,729 выработанная электрическая мощность будет равна Рэл=208 Вт, что соответствует расчетной мощности солнечного модуля 219 Вт при температуре ФЭП 74°C.

Расчет тепломассопереноса осуществлялся по формулам:

QппоптR Fпп Кгеом, N=QФЭ ηФЭ⋅Qконв=α(tc-ta)F, α=5,7+3,8 V, Qрад=εσ(Tc4-Ta4)F, Q=Qпп-N-Qконв-Qрад⋅m=Q/cp(tвых-tвх), W=m/γFпс, Re=wdэкв/ν, αж=Nu λж/dэкв, Qвж(tc-tж)F. η=ηo[1-k(Tf-To)],

где Qпп - поглощенный поток отраженных лучей приемником, ηОПТ - оптический кпд, R - прямая солнечная радиация, Fпп - площадь приемной поверхности 3-х граней (АВ, BC и CD) с учетом углов падения отраженных лучей, Kгеом - геометрическая концентрация, N - мощность электрическая, ηФЭ - КПД ФЭ, QФЭ - поглощенный поток фотоэлементами, Qконв - конвективные теплопотери, α - коэффициент теплоотдачи, tc, F - площадь четырех граней трапецеидального приемника, tc, °C - средняя температура стенки приемника, ta, °C - температура среды, V - скорость ветра, Qрад - радиационные теплопотери,_ε - степень черноты стенки, σ - постоянная Стефана-Больцмана, Тс, K - средняя температура стенки приемника, Ta, K - _температура среды, Q - поток для охлаждения теплоносителем, m - массовый расход воды, cp - удельная теплоемкость, tвых, tвх - температура воды на выходе и входе приемника, W - скорость потока воды, γ - плотность воды, Fпс - площадь поперечного сечения приемника, dэкв - эквивалентный диаметр поперечного сечения приемника, ν - коэффициент кинематической вязкости воды, Re - число Рейнольдса, Nu - число Нуссельта, αж - коэффициент теплоотдачи от стенки к воде, tж - средняя температура воды, λж - коэффициент теплопроводности воды, Qв - тепловой поток, отводимый водой, ηt - зависимость КПД ФЭП от температуры, η0 - КПД ФЭП при стандартной температуре T0=298 K, - температура ФЭП, k - температурный коэффициент.

На основании приведенных выше формул произведен расчет зависимости характеристик солнечного модуля: КПД ηt, расхода воды от температуры (фиг. 8). Как видно из фиг. 8, максимальная мощность получена при температуре 43°C и составила 254 Вт. Тепловые потери в окружающую среду составили; конвективные 92 Вт, радиационные 66 Вт. Температура охлаждающей воды на входе 15-18, на выходе 22-27°C. КПД модуля 0,1146-0,1053.

При температуре ФЭП 74°C те же мощности: 233 Вт, 246 и 219 Вт.

Работает солнечный теплофотоэлектрический модуль с концентратором следующим образом.

Солнечное излучение, попадая на поверхность асимметричного параболоцилиндрического концентратора 1 солнечного модуля (фиг. 2), отражается под расчетными углами наклона таким образом, чтобы они обеспечивали равномерную концентрацию лучей на гранях теплофотоэлектрического приемника 2 солнечного модуля, выполненного в виде трубопровода с профилем трапецеидальной формой в поперечном сечении, в котором нагревается теплоноситель (вода) и на котором смонтированы скоммутированные параллельно-последовательно фотоэлектрические преобразователи. ФЭП вырабатывают электроэнергию постоянного тока, а теплоноситель регулирует температуру ФЭП и используется для теплоснабжения. Регулируя скорость протока и расход теплоносителя, можно оптимизировать нагрев ФЭП и теплоносителя, КПД солнечного модуля.

Солнечный модуль снабжен системой слежения за Солнцем, обеспечивая в прицельном положении генерирование максимальной мощности.

Пример выполнения солнечного модуля с ассиметричным параболоцилиндрическим концентратором.

Концентратор 1 (фиг. 1) с максимальным размером миделя Rмах=900 мм, высотой 500 мм выполнен из алюминиевого листа толщиной 0,3 мм с зеркально отражающей внутренней поверхностью, закрепленного на ребрах жесткости 5 размером 8×700 мм и толщиной 1 мм в прорезях опор 4, с расчетным рабочим профилем (фиг. 2), обеспечивающим равномерную концентрацию лучей на 3-х гранях трапецеидального теплофотоприемника солнечного модуля. Устройство протока теплоносителя выполнено в виде трубопровода с трапецеидальным профилем с шириной облучаемых граней 40 мм и длиной L=700 мм, со штуцерами 6 для входа и выхода теплоносителя и закреплено на стойках 3.

Солнечный модуль устанавливается на опоре 4, имеющей привод с 2 степенями свободы и датчиком слежения за Солнцем (на фиг. 1 не показаны).

Таким образом, предложенный солнечный модуль с асимметричным параболоцилиндрическим концентратором 1 (фиг. 1) обеспечивает достаточно равномерное распределение освещенности каждой грани со средней концентрацией от дуг концентратора AB - 17,5, BC - 19,5, CD - 35 крат на рабочей поверхности теплофотоприемника 2 солнечного модуля, повышая КПД преобразования солнечной энергии в электрическую и тепловую.

На основании приведенных расчетов в зависимости от натурных условий - плотности потока солнечного излучения, скорости ветра, температуры среды; конструктивных параметров модуля - формы и размеров концентратора и теплофотоприемника, оптического кпд, применяемых материалов, расхода теплоносителя (воды), можно прогнозировать выходные параметры (тепловые и электрические) и эффективность работы модуля в целом.


Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения
Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения
Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения
Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения
Источник поступления информации: Роспатент

Показаны записи 91-100 из 228.
29.12.2017
№217.015.f349

Порошковая термореагирующая шихта для индукционной наплавки твердого сплава

Изобретение может быть использовано для индукционной наплавки твердых сплавов типа высоколегированных хромистых белых чугунов, а также для нанесения легированных бором износостойких покрытий. Порошковая термореагирующая шихта содержит, мас.%: флюс на основе боросодержащих компонентов 8-10,...
Тип: Изобретение
Номер охранного документа: 0002637736
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f3e1

Машина для уборки клубней топинамбура

Изобретение относится к сельскохозяйственному машиностроению. Машина содержит раму, опорные колеса, выкапывающие рабочие органы, теребильное устройство с механизмом отрыва клубней, планчатый сепарирующий элеватор, механизмы транспортировки и доочистки клубней, бункер и выгрузной транспортер....
Тип: Изобретение
Номер охранного документа: 0002637785
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f3f9

Технологический адаптер с модулем магнитно-импульсной обработки растений

Изобретение относится к области сельскохозяйственного машиностроения и растениеводства. Технологический адаптер магнитно-импульсной обработки растений включает раму, аппарат магнитно-импульсной обработки с двумя плоскими индукторами, установленными с возможностью перемещения в вертикальной...
Тип: Изобретение
Номер охранного документа: 0002637726
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85e

Ветроустановка с вихревыми аэродинамическими преобразователями воздушного потока

Изобретение относится к ветроэнергетике. Ветроустановка с вихревыми аэродинамическими преобразователями воздушного потока, содержащая ветроприемное устройство с ускорителем ветрового потока, выполненным в виде трубки Вентури, отличающаяся тем, что включает в себя полый кольцевой концентратор, в...
Тип: Изобретение
Номер охранного документа: 0002639822
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8e2

Комплекс оборудования для производства топливных и кормовых брикетов и гранул

Изобретение раскрывает комплекс оборудования для производства топливных и кормовых брикетов и гранул, включающий измельчитель, сушилку, бункер-дозатор, смеситель, формовочное устройство, охладитель брикетов, устройство подачи жидких компонентов, при этом он снабжен измельчителем рулонов, тюков...
Тип: Изобретение
Номер охранного документа: 0002639707
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f95c

Устройство и способ усиления электрических сигналов (варианты)

Изобретение относится к устройствам усиления электрических сигналов на основе резонансных преобразователей электрической энергии. Задачей и техническим результатом является в способе и устройстве увеличение коэффициента усиления и снижение зависимости параметров от величины нагрузки с...
Тип: Изобретение
Номер охранного документа: 0002639948
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fa15

Способ очистки сточных вод от растворенных органических загрязнений

Изобретение относится к процессам очистки сточных вод, содержащих растворенные органические загрязнения, методом мокрого окисления, конкретно методом сверхкритического водного окисления, и может использоваться для очистки бытовых, технологических, поверхностных, сельскохозяйственных сточных...
Тип: Изобретение
Номер охранного документа: 0002639810
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fa52

Универсальный высевающий диск

Высевающий диск имеет сквозные конические ячейки, расположенные на нем с равномерным шагом. Высевающий диск выполнен разборным из двух жестко закрепленных между собой частей, одна из которых выполнена в виде круглой пластины толщиной 3-4 мм с отверстиями по окружности, а другая - в виде кольца...
Тип: Изобретение
Номер охранного документа: 0002640280
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fbc8

Концентратор солнечной энергии

Изобретение может использоваться в гелиотехнике, в частности, в концентраторах солнечной энергии. Концентратор содержит симметричную отражающую поверхность, выполненную в виде фоклина, и прямоугольное выходное окно для размещения приемника излучения, совпадающее с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002638096
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fbee

Комбинированный теплоаккумуляционный электроотопительный прибор со ступенчатым нагревом теплоаккумулирующего сердечника

Изобретение относится к электрооборудованию для отопления, в частности для производственных и животноводческих помещений. В комбинированном теплоаккумуляционном электроотопительном приборе со ступенчатым нагревом теплоаккумулирующего сердечника в последнем на одном из электрических...
Тип: Изобретение
Номер охранного документа: 0002638696
Дата охранного документа: 15.12.2017
Показаны записи 91-100 из 121.
13.02.2018
№218.016.2642

Устройство для групповой упаковки, загрузки, транспортировки, сушки и хранения селекционных семян в контейнерах

Устройство для групповой упаковки, загрузки, транспортировки, сушки и хранения селекционных семян в контейнерах включает контейнеры с горловинами и крышками и кассету с гнездами для фиксации контейнеров. Контейнеры снабжены дополнительными симметрично расположенными горловинами. Крышки на...
Тип: Изобретение
Номер охранного документа: 0002643947
Дата охранного документа: 06.02.2018
13.02.2018
№218.016.266f

Устройство и способ усиления электрических сигналов (варианты)

Изобретение относится к электротехнике, в частности к устройствам усиления электрических сигналов на основе резонансных преобразователей электрической энергии. Технический результат заключается в увеличении коэффициента усиления и снижении зависимости параметров от величины нагрузки....
Тип: Изобретение
Номер охранного документа: 0002644119
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.2fbc

Способ сушки последней партии зерна

Изобретение относится к сушке зерна и может быть использовано в сельском хозяйстве и в системе заготовок, преимущественно в зерносушилках с топками на твердом топливе. Способ сушки последней партии зерна заключается в прекращении подачи топлива в топку, циклической досушке, охлаждении и...
Тип: Изобретение
Номер охранного документа: 0002644656
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3195

Беспилотный робот для внесения гербицидов

Изобретение относится к сельскохозяйственному машиностроению, в частности к техническим средствам для обработки растений. Беспилотный робот для внесения гербицидов содержит раму с управляемыми колесами, систему управления и навигации с контрольно-измерительными приборами, систему питания, а...
Тип: Изобретение
Номер охранного документа: 0002645165
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.31e7

Устройство и способ усиления электрических сигналов

Изобретение относится к электротехнике. Устройство содержит катушку индуктивности, соединенную последовательно с емкостью, с образованием резонансного контура и прибор для периодического изменения параметров резонансного контура. Резонансный контур соединен последовательно с высоковольтным...
Тип: Изобретение
Номер охранного документа: 0002645222
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.33c0

Способ сушки семян и зерна и устройство для его осуществления

Изобретение относится к сельскому хозяйству и смежным с ним областям. Способ сушки семян и зерна заключается в том, что материал загружают, циркулируют, периодически отлеживают и воздействуют подогретым и неподогретым агентом сушки, высушивают, охлаждают и разгружают. Длительность τ...
Тип: Изобретение
Номер охранного документа: 0002645764
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.33e4

Роликовый сепаратор для отделения луковиц и корнеклубнеплодов от почвенных комков

Изобретение относится к сельскохозяйственному машиностроению. Роликовый сепаратор состоит из обрезиненных вальцов, размещенных с зазорами параллельно друг другу и установленных на общей раме в горизонтальной плоскости с возможностью вращения. Приемный валец со стороны пруткового элеватора...
Тип: Изобретение
Номер охранного документа: 0002645765
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3411

Способ лечения маститов и стимуляции лактации коров и устройство для его осуществления

Изобретение относится к области сельского хозяйства, в частности к устройству и способу лечения мастита и стимуляции лактации коров. Устройство содержит кожух с массажными пластинами, съемную платформу с отверстиями, которая снабжена эластичным элементом, установленным с возможностью...
Тип: Изобретение
Номер охранного документа: 0002645767
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3413

Солнечный модуль с концентратором

Изобретение относится к области гелиотехники, в частности к солнечным модулям с концентраторами и фотоэлектрическими и тепловыми приемниками солнечного излучения. Солнечный модуль с концентратором содержит кольцеобразный полутороидальный зеркальный отражатель и приемник излучения с двусторонней...
Тип: Изобретение
Номер охранного документа: 0002645800
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.365b

Двухвальный горизонтальный смеситель с регулируемыми вертикальными лопатками

Изобретение относится к области машиностроения, где происходит перемешивание исходных компонентов в однородную массу, и может быть использовано в сельском хозяйстве и других отраслях промышленности. В двухвальном смесителе лопатки входят в комплекты сборочных узлов, которые закреплены на каждой...
Тип: Изобретение
Номер охранного документа: 0002646406
Дата охранного документа: 05.03.2018
+ добавить свой РИД