×
25.08.2017
217.015.b83d

Результат интеллектуальной деятельности: Способ производства горячекатаной высокопрочной коррозионно-стойкой стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к производству горячекатаной стали, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике. Для повышения коррозионной стойкости стали при сохранении уровня прочности и пластичности получают заготовку из стали, содержащей, мас. %: углерод 0,01-0,035, кремний 0,2-0,6, марганец 0,5-0,7, сера 0,005-0,015, фосфор не более 0,015, хром 14,0-17,0, никель 1,8-5,5, молибден 0,45-2,2, титан 0,01-0,04, ванадий 0,03-0,12, ниобий 0,02-0,12, азот 0,1-0,25, железо и неизбежные примеси - остальное, нагревают заготовку в диапазоне от 1200 до 1300°C, проводят горячую прокатку заготовки и последующую термическую обработку путем закалки с температуры 900-1100°C и отпуска при температуре 400-600°C в течение 1 часа. 2 табл.

Изобретение относится к области металлургии, а именно к разработке способов производства и составов горячекатаной стали с высокими прочностными и коррозионными свойствами, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике.

Особенности природно-климатических условий данных регионов диктуют особые требования к металлопродукции для указанных объектов, которые должны обеспечить их длительный ресурс эксплуатации. К таким условиям относятся не только экстремальные температурные условия, связанные с ними термические и механические нагрузки, но и повышенное воздействие агрессивных сред - морская вода, неорганические биоактивные среды и др.

В связи с этим для обеспечения длительного ресурса эксплуатации в рассматриваемых условиях требуются стали, которые помимо комплекса отличных механических свойств должны иметь высокую стойкость против различных видов коррозионного и коррозионно-механического разрушения и износостойкость.

Известен способ получения высокопрочной коррозионно-стойкой стали аустенитно-мартенситного класса, включающий выплавку стали, содержащей компоненты в следующем соотношении, мас. %: углерод 0,08-0,12; хром 13,5-14,5; никель 3,5-4,5; азот 0,15-0,20; молибден 2-2,5; марганец 1-1,5; ванадий 0,03-0,05; ниобий 0,03-0,05; кремний 0,1-0,3; медь 0,3-0,8; кальций 0,01-0,03; барий 0,01-0,03; железо остальное, и последующую термическую обработку по режиму: закалка + обработка холодом + отпуск. Сталь предназначена для изготовления высоконагруженных деталей машин, в частности самолетов, работающих при температуре от минус 70 до 300°C в любых климатических условиях. Техническим результатом изобретения является повышение механических свойств. Предел прочности составляет 1800-1850 МПа, предел текучести 1400-1450 МПа, относительное удлинение 16-20%, ударная вязкость 60-80 Дж/см2. Сталь обладает повышенным сопротивлением коррозионному растрескиванию и выдерживает без разрушения более шести месяцев в камере соляного тумана 5% NaCl при 35°C при приложенном напряжении изгиба 1000 МПа (патент RU 2214474, МПК C22C 38/48, опубликован 20.10.2003).

Недостатком данного изобретения являются довольно низкие значения относительного удлинения.

Наиболее близким аналогом заявленного изобретения является способ производства высокоазотистой мартенситной нержавеющей стали, включающий выплавку стали, горячую деформацию и последующую термическую обработку - закалку с нагревом до 950-1200°C, формирование мартенситной структуры, старение. Сталь имеет состав, мас. %: ≤0,03 углерода, ≤0,01 серы, ≤1 кремния, ≤0,015 фосфора, 16-18 хрома, 3,4-4,5 никеля, 3,5-4,5 меди, 0,15-0,25 азота, 0,001-0,01 бора, 0,005-0,02 церия или иттрия, остальное железо. Предел прочности составляет 1290-1450 МПа, предел текучести составляет 1150-1350 МПа, удлинение 18-28% (заявка CN 102134688 A, МПК C22C 33/06, C22C 38/54, опубликована 27.07.2011).

Недостатком данного изобретения является низкая стойкость против питтинговой коррозии.

Задачей, на решение которой направлено изобретение, является оптимизация способа производства, химического состава стали и параметров термической обработки с обеспечением технического результата в виде повышения коррозионной стойкости при сохранении уровня прочности и пластичности.

Технический результат достигается тем, что в способе производства высокопрочной коррозионно-стойкой горячекатаной стали, включающем получение заготовки из стали, горячую прокатку заготовки и последующую термическую обработку, согласно изобретению заготовку получают из стали, содержащей компоненты в следующем соотношении, мас. %:

Углерод 0,01-0,035
Кремний 0,2-0,6
Марганец 0,5-0,7
Сера 0,005-0,015
Фосфор не более 0,015
Хром 14,0-17,0
Никель 1,8-5,5
Молибден 0,45-2,2
Титан 0,01-0,04
Ванадий 0,03-0,12
Ниобий 0,02-0,12
Азот 0,1-0,25
Железо и неизбежные примеси остальное

при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне от 1200 до 1300°C, а термическую обработку проводят путем закалки с температуры 900-1100°C и отпуска при температуре 400-600°C в течение 1 часа.

Изобретение направлено на получение мелкодисперсной структуры мартенсита при минимальном содержании в стали остаточного аустенита. Для получения мартенситной структуры необходимо, чтобы при температурах окончания прокатки или при нагреве под закалку структура стали была полностью аустенитной. Важным фактором является устойчивость или стабильность аустенита, которая контролируется присутствием в стали аустенитообразующих элементов никеля, азота и углерода, повышенное содержание которых должно способствовать формированию при нагреве полностью аустенитной структуры.

Повышение показателей прочности и пластичности происходит за счет измельчения структуры во время горячей прокатки путем торможения роста исходного аустенитного зерна частицами комплексного карбонитрида, а также коррозионной стойкости за счет повышения питтингостойкости путем уменьшения возможности образования карбидов хрома и, как следствие, обеднения твердого раствора по хрому.

Наличие в стали указанного содержания углерода и азота необходимо для обеспечения высокой прочности.

При содержании C более 0,035% повышается риск образования карбидов хрома и, как следствие, обеднения матрицы по хрому, что отрицательно влияет на питтингостойкость.

Роль азота в повышении твердости мартенсита заключается в том, что он влияет не только на устойчивость аустенита, но и входит в состав выделений карбонитридов ванадия и ниобия, которые обеспечивают упрочнение по механизмам измельчения зерна и дисперсионного твердения. При содержании N более 0,25% затруднительно получить металл без пористости ввиду ограниченной растворимости азота в металле.

Содержание хрома 14-17% необходимо для обеспечения коррозионной стойкости и повышения растворимости азота. При концентрации хрома менее 14% возможны локальные повреждения пассивной пленки, тогда как при концентрациях хрома более 16% возможно появление в структуре дельта-феррита, отрицательно влияющего на прочностные показатели.

Добавки ванадия и ниобия в количестве 0,03-0,12% каждого обеспечивают получение мелкозернистой структуры. Выделения частиц карбонитридов ниобия сдерживают рост зерна аустенита при высокотемпературной выдержке, что способствует формированию более дисперсной структуры мартенсита.

Легирование молибденом в количестве до 2,2% повышает стойкость против питтинговой коррозии.

Для обеспечения наиболее высоких прочностных характеристик следует обеспечивать формирование однородной мартенситной структуры с минимальным количеством остаточного аустенита, при отсутствии феррита. Это достигается, в частности, при содержании в стали никеля в количестве 1,8-5,5%. К дополнительному повышению твердости и, соответственно, прочности приводит формирование мелкодисперсной структуры мартенсита за счет присутствия при нагреве под прокатку и формирования в процессе горячей прокатки субмикронных частиц комплексного карбонитрида, количество которых увеличивается с повышением содержания в стали азота.

Нагрев под прокатку в интервале температур 1200-1300°C необходим для достаточного растворения карбонитридных выделений с целью их последующего выделения при прокатке, приводящего к измельчению зерна и повышению прочности.

При нагреве под закалку до температур 900-1100°C микроструктура стали полностью аустенитная, что должно приводить к формированию после закалки преимущественно мартенситной структуры с некоторым количеством остаточного аустенита.

При нагреве под закалку ниже 900°C есть опасность попасть в двухфазную область, что недопустимо. При нагреве под закалку выше 1100°C существует вероятность существенного роста аустенитного зерна из-за растворения сдерживающих его рост выделений карбидов и карбонитридов и, как следствие, получение крупной мартенситной структуры после закалки, что отрицательно отразится на прочностных свойствах.

После закалки сталь подвергается отпуску при температуре 400-600°C, при котором не происходит распада остаточного аустенита из-за наличия в стали легирующих элементов, стабилизирующих аустенит (Ni, Mn, N). В то же время образование дисперсных карбидов при отпуске стали способствует снижению концентрации углерода в твердом растворе аустенита, что повышает точку начала мартенситного превращения и способствует превращению остаточного аустенита в мартенсит при охлаждении образцов после отпуска.

Отпуск при температуре ниже 400°C не даст необходимого эффекта образования дисперсных карбидов и превращения остаточного аустенита в мартенсит, а при температуре выше 600°C есть опасность образования крупных карбидов хрома и обеднения матрицы по хрому с соответствующим снижением коррозионной стойкости.

Примеры конкретного выполнения способа

Восемь вариантов хромистой стали (химический состав приведен в таблице 1) были получены в лабораторных условиях. С температуры 1200°C осуществлялась горячая прокатка на лабораторном стане на толщину 4 мм с последующей имитацией смотки в рулон. Из стали каждой плавки было получено по 4 экспериментальных образца проката, различающихся вариантами термообработки (таблица 2).

Закалка 900°C - отпуск 400°C.

Закалка 900°C - отпуск 600°C.

Закалка 1050°C - отпуск 400°C.

Закалка 1050°C - отпуск 600°C.

На образцах стали проводили металлографические исследования и механические испытания. Стойкость сталей против питтинговой коррозии исследовали по ГОСТ 9.912-89 при использовании электрохимического метода в водном растворе хлорида натрия концентрацией 16,5 г/л. Критерием стойкости против питтинговой коррозии был базис питтингостойкости (ΔEп.о), мВ, который вычисляли по формуле (1):

где Eп.о. - потенциал питтингообразования;

Eкор - потенциал свободной коррозии.

Если сравнить варианты стали между собой, то наиболее высокие значения прочности получены для сталей вариантов 2, 4, 7 и 8. В стали указанных вариантов из-за повышенного содержания азота при нагреве под прокатку присутствует большее количество комплексного карбонитрида, частицы которого тормозят рост аустенитного зерна. Кроме того, для стали тех же вариантов в процессе горячей прокатки происходит образование большого количества субмикронных частиц комплексного карбонитрида, которые тормозят рекристаллизационные процессы и способствуют формированию мелкодисперсной мартенситной структуры. Наибольшие показатели относительного удлинения получены для стали варианта 8.

Таким образом, для обеспечения наиболее высоких прочностных характеристик следует формировать однородную мартенситную структуру с минимальным количеством остаточного аустенита при отсутствии феррита. Это достигается, в частности, при повышенном содержании в стали никеля и азота. К дополнительному повышению твердости и, соответственно, прочности приводит формирование мелкодисперсной структуры мартенсита за счет присутствия при нагреве под прокатку и формирования в процессе горячей прокатки субмикронных частиц комплексного карбонитрида, количество которых увеличивается с повышением содержания в стали азота.

Основные выводы по данным электрохимического исследования питтингостойкости следующие: наиболее стойкими к локальной коррозии в выбранной испытательной среде оказались образцы сталей вариантов 2, 3 и 8 с повышенным содержанием молибдена. Таким образом, подтверждена целесообразность легирования разрабатываемой стали молибденом до 2,2%.

Влияние режимов термообработки на коррозионную стойкость можно объяснить следующим образом. В процессе отпуска при 600°C происходит распад мартенсита и интенсивное выделение карбидов хрома, что приводит к снижению коррозионной стойкости как из-за формирования гетерогенной структуры (мартенсит отпуска), так и из-за обеднения твердого раствора по хрому. В процессе отпуска при 400°C распада мартенсита и образования карбидов хрома не происходит.

Комплекс проведенных коррозионных испытаний позволяет заключить, что повышенное содержание азота и молибдена в сочетании с закалкой 900-1050°C и отпуском при 400°C позволяет получить сталь с высокой стойкостью против питтинговой коррозии в условиях морской воды континентального шельфа и материкового стока, а также в условиях тающих льдов.

Наиболее высокую стойкость против питтинговой коррозии показали стали с повышенным содержанием молибдена. Другим условием обеспечения высокой коррозионной стойкости является минимальное содержание в стали остаточного аустенита. Таким образом, формирование преимущественно мартенситной структуры путем оптимизации химического состава стали и режима термической обработки - закалка с отпуском при 400°C обеспечивает и высокие прочностные характеристики, и коррозионную стойкость.

Источник поступления информации: Роспатент

Показаны записи 61-66 из 66.
19.04.2019
№219.017.2e02

Способ определения локальной концентрации остаточных микронапряжений в металлах и сплавах

Изобретение относится к области рентгенографических способов исследования тонкой структуры и может быть использовано для неразрушающего контроля внутренних напряжений с целью выявления признаков опасности развития хрупкого разрушения металлических деталей и изделий. Способ определения локальной...
Тип: Изобретение
Номер охранного документа: 0002390763
Дата охранного документа: 27.05.2010
19.04.2019
№219.017.2efc

Способ определения критерия сопротивления металлов и сплавов хрупкому разрушению

Использование: для определения критерия сопротивления металлов и сплавов хрупкому разрушению. Сущность заключается в том, что определение критерия сопротивления металлов и сплавов хрупкому разрушению осуществляют путем оценки значений локальной концентрации остаточных микронапряжений,...
Тип: Изобретение
Номер охранного документа: 0002383006
Дата охранного документа: 27.02.2010
20.04.2019
№219.017.3501

Высокодемпфирующая сталь с регламентированным уровнем демпфирующих свойств и изделие, выполненное из неё

Изобретение относится к области металлургии, а именно к сталям, обладающим высокой демпфирующей способностью, а также к изделиям, выполненным из них, и может быть использовано при изготовлении холодно- и горячекатаных листов, сортового проката, прутков и поковок, используемых в качестве...
Тип: Изобретение
Номер охранного документа: 0002685452
Дата охранного документа: 18.04.2019
20.05.2019
№219.017.5d38

Способ производства низколегированного хладостойкого листового проката

Изобретение относится к области металлургии, в частности к производству листового проката для применения в ответственных деталях автомобилей, сельскохозяйственного оборудования, краностроении и др., сталь может использоваться в строительных конструкциях в условиях Сибири и Крайнего Севера. Для...
Тип: Изобретение
Номер охранного документа: 0002688077
Дата охранного документа: 17.05.2019
04.06.2019
№219.017.72b1

Способ производства низколегированного хладостойкого свариваемого листового проката

Изобретение относится к области металлургии, к производству листового проката толщиной до 25 мм из низколегированной хладостойкой конструкционной стали для использования в судостроении, топливно-энергетическом комплексе. Для обеспечения высокой прочности, пластичности и хладостойкости...
Тип: Изобретение
Номер охранного документа: 0002690398
Дата охранного документа: 03.06.2019
15.06.2019
№219.017.83bb

Способ получения непрерывнолитого слитка из сталей и сплавов с пониженной технологической пластичностью

Изобретение относится к непрерывному литью сталей и сплавов с пониженной технологической пластичностью, в том числе быстрорежущих сталей. Во время литья металл подвергают прерывистому охлаждению в подбойной зоне и в зоне вторичного охлаждения с чередованием периодов интенсивного охлаждения и...
Тип: Изобретение
Номер охранного документа: 0002691481
Дата охранного документа: 14.06.2019
Показаны записи 61-70 из 72.
09.06.2019
№219.017.7a35

Модификатор для углеродистой и низколегированной стали для проката и труб повышенной коррозионной стойкости

Изобретение относится к черной металлургии и может быть использовано при производстве углеродистых и низколегированных сталей для проката и труб с повышенными механическими свойствами и стойкостью против различных видов общей и локальной коррозии. Такая металлопродукция используется в...
Тип: Изобретение
Номер охранного документа: 0002387727
Дата охранного документа: 27.04.2010
19.06.2019
№219.017.85c8

Способ получения массивного катализатора гидропереработки нефтяных фракций

Изобретение относится к области нефтепереработки, в частности к способу получения массивного катализатора гидропереработки нефтяных фракций. Описан способ получения массивного катализатора гидропереработки нефтяных фракций, представляющего собой композицию, в состав которой входят компоненты в...
Тип: Изобретение
Номер охранного документа: 0002346742
Дата охранного документа: 20.02.2009
19.06.2019
№219.017.89b9

Способ модифицирования углеродного гемосорбента и углеродный гемосорбент с иммобилизованным белком

Изобретение относится к области медицины и касается способа модифицирования углеродного гемосорбента, включающего обработку водным раствором оксикислоты с концентрацией 5-20% при соотношении гемосорбент : раствор оксикислоты 1:10-1:20 при температуре 25°С в течение 2-4 ч с последующим...
Тип: Изобретение
Номер охранного документа: 0002452499
Дата охранного документа: 10.06.2012
19.06.2019
№219.017.8b53

Способ модифицирования углеродного гемосорбента

Изобретение относится к способу модифицирования углеродного гемосорбента. Способ включает обработку пористого углеродного материала воздушно-водяной смесью в кипящем слое с последующим высушиванием продукта. При этом дополнительно проводят пропитку гранул углеродного гемосорбента водным...
Тип: Изобретение
Номер охранного документа: 0002440844
Дата охранного документа: 27.01.2012
10.07.2019
№219.017.ab0f

Способ производства холоднокатаных полос, в том числе термообработанных, и устройство для его осуществления

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаных полос марок 08Ю и IF-сталей, в том числе термообработанных. Задача изобретения - создание несложного и недорогого в изготовлении и эксплуатации оборудования. Согласно способу в процессе...
Тип: Изобретение
Номер охранного документа: 0002295404
Дата охранного документа: 20.03.2007
16.08.2019
№219.017.c041

Способ получения углеродного изделия

Изобретение относится к получению углеродных изделий. Техническим результатом является повышение качества за счет исключения дефектов ячеистых углеродных изделий. Технический результат достигается способом получения углеродного изделия, который включает смешивание углеродного материала с...
Тип: Изобретение
Номер охранного документа: 0002697324
Дата охранного документа: 13.08.2019
11.04.2020
№220.018.141d

Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения...
Тип: Изобретение
Номер охранного документа: 0002718604
Дата охранного документа: 08.04.2020
23.04.2020
№220.018.1800

Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования

Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих...
Тип: Изобретение
Номер охранного документа: 0002719618
Дата охранного документа: 21.04.2020
21.05.2020
№220.018.1f34

Способ производства холоднокатаного отожженного листового проката из if-стали

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей (Interstitial Free - сталь без атомов внедрения), который может быть использован в автомобильной промышленности. Для получения из стали проката с уровнем...
Тип: Изобретение
Номер охранного документа: 0002721263
Дата охранного документа: 18.05.2020
23.05.2020
№220.018.20a8

Способ производства холоднокатаного непрерывно отожженого листового проката из if-стали

Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при...
Тип: Изобретение
Номер охранного документа: 0002721681
Дата охранного документа: 22.05.2020
+ добавить свой РИД