×
25.08.2017
217.015.b83d

Результат интеллектуальной деятельности: Способ производства горячекатаной высокопрочной коррозионно-стойкой стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к производству горячекатаной стали, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике. Для повышения коррозионной стойкости стали при сохранении уровня прочности и пластичности получают заготовку из стали, содержащей, мас. %: углерод 0,01-0,035, кремний 0,2-0,6, марганец 0,5-0,7, сера 0,005-0,015, фосфор не более 0,015, хром 14,0-17,0, никель 1,8-5,5, молибден 0,45-2,2, титан 0,01-0,04, ванадий 0,03-0,12, ниобий 0,02-0,12, азот 0,1-0,25, железо и неизбежные примеси - остальное, нагревают заготовку в диапазоне от 1200 до 1300°C, проводят горячую прокатку заготовки и последующую термическую обработку путем закалки с температуры 900-1100°C и отпуска при температуре 400-600°C в течение 1 часа. 2 табл.

Изобретение относится к области металлургии, а именно к разработке способов производства и составов горячекатаной стали с высокими прочностными и коррозионными свойствами, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике.

Особенности природно-климатических условий данных регионов диктуют особые требования к металлопродукции для указанных объектов, которые должны обеспечить их длительный ресурс эксплуатации. К таким условиям относятся не только экстремальные температурные условия, связанные с ними термические и механические нагрузки, но и повышенное воздействие агрессивных сред - морская вода, неорганические биоактивные среды и др.

В связи с этим для обеспечения длительного ресурса эксплуатации в рассматриваемых условиях требуются стали, которые помимо комплекса отличных механических свойств должны иметь высокую стойкость против различных видов коррозионного и коррозионно-механического разрушения и износостойкость.

Известен способ получения высокопрочной коррозионно-стойкой стали аустенитно-мартенситного класса, включающий выплавку стали, содержащей компоненты в следующем соотношении, мас. %: углерод 0,08-0,12; хром 13,5-14,5; никель 3,5-4,5; азот 0,15-0,20; молибден 2-2,5; марганец 1-1,5; ванадий 0,03-0,05; ниобий 0,03-0,05; кремний 0,1-0,3; медь 0,3-0,8; кальций 0,01-0,03; барий 0,01-0,03; железо остальное, и последующую термическую обработку по режиму: закалка + обработка холодом + отпуск. Сталь предназначена для изготовления высоконагруженных деталей машин, в частности самолетов, работающих при температуре от минус 70 до 300°C в любых климатических условиях. Техническим результатом изобретения является повышение механических свойств. Предел прочности составляет 1800-1850 МПа, предел текучести 1400-1450 МПа, относительное удлинение 16-20%, ударная вязкость 60-80 Дж/см2. Сталь обладает повышенным сопротивлением коррозионному растрескиванию и выдерживает без разрушения более шести месяцев в камере соляного тумана 5% NaCl при 35°C при приложенном напряжении изгиба 1000 МПа (патент RU 2214474, МПК C22C 38/48, опубликован 20.10.2003).

Недостатком данного изобретения являются довольно низкие значения относительного удлинения.

Наиболее близким аналогом заявленного изобретения является способ производства высокоазотистой мартенситной нержавеющей стали, включающий выплавку стали, горячую деформацию и последующую термическую обработку - закалку с нагревом до 950-1200°C, формирование мартенситной структуры, старение. Сталь имеет состав, мас. %: ≤0,03 углерода, ≤0,01 серы, ≤1 кремния, ≤0,015 фосфора, 16-18 хрома, 3,4-4,5 никеля, 3,5-4,5 меди, 0,15-0,25 азота, 0,001-0,01 бора, 0,005-0,02 церия или иттрия, остальное железо. Предел прочности составляет 1290-1450 МПа, предел текучести составляет 1150-1350 МПа, удлинение 18-28% (заявка CN 102134688 A, МПК C22C 33/06, C22C 38/54, опубликована 27.07.2011).

Недостатком данного изобретения является низкая стойкость против питтинговой коррозии.

Задачей, на решение которой направлено изобретение, является оптимизация способа производства, химического состава стали и параметров термической обработки с обеспечением технического результата в виде повышения коррозионной стойкости при сохранении уровня прочности и пластичности.

Технический результат достигается тем, что в способе производства высокопрочной коррозионно-стойкой горячекатаной стали, включающем получение заготовки из стали, горячую прокатку заготовки и последующую термическую обработку, согласно изобретению заготовку получают из стали, содержащей компоненты в следующем соотношении, мас. %:

Углерод 0,01-0,035
Кремний 0,2-0,6
Марганец 0,5-0,7
Сера 0,005-0,015
Фосфор не более 0,015
Хром 14,0-17,0
Никель 1,8-5,5
Молибден 0,45-2,2
Титан 0,01-0,04
Ванадий 0,03-0,12
Ниобий 0,02-0,12
Азот 0,1-0,25
Железо и неизбежные примеси остальное

при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне от 1200 до 1300°C, а термическую обработку проводят путем закалки с температуры 900-1100°C и отпуска при температуре 400-600°C в течение 1 часа.

Изобретение направлено на получение мелкодисперсной структуры мартенсита при минимальном содержании в стали остаточного аустенита. Для получения мартенситной структуры необходимо, чтобы при температурах окончания прокатки или при нагреве под закалку структура стали была полностью аустенитной. Важным фактором является устойчивость или стабильность аустенита, которая контролируется присутствием в стали аустенитообразующих элементов никеля, азота и углерода, повышенное содержание которых должно способствовать формированию при нагреве полностью аустенитной структуры.

Повышение показателей прочности и пластичности происходит за счет измельчения структуры во время горячей прокатки путем торможения роста исходного аустенитного зерна частицами комплексного карбонитрида, а также коррозионной стойкости за счет повышения питтингостойкости путем уменьшения возможности образования карбидов хрома и, как следствие, обеднения твердого раствора по хрому.

Наличие в стали указанного содержания углерода и азота необходимо для обеспечения высокой прочности.

При содержании C более 0,035% повышается риск образования карбидов хрома и, как следствие, обеднения матрицы по хрому, что отрицательно влияет на питтингостойкость.

Роль азота в повышении твердости мартенсита заключается в том, что он влияет не только на устойчивость аустенита, но и входит в состав выделений карбонитридов ванадия и ниобия, которые обеспечивают упрочнение по механизмам измельчения зерна и дисперсионного твердения. При содержании N более 0,25% затруднительно получить металл без пористости ввиду ограниченной растворимости азота в металле.

Содержание хрома 14-17% необходимо для обеспечения коррозионной стойкости и повышения растворимости азота. При концентрации хрома менее 14% возможны локальные повреждения пассивной пленки, тогда как при концентрациях хрома более 16% возможно появление в структуре дельта-феррита, отрицательно влияющего на прочностные показатели.

Добавки ванадия и ниобия в количестве 0,03-0,12% каждого обеспечивают получение мелкозернистой структуры. Выделения частиц карбонитридов ниобия сдерживают рост зерна аустенита при высокотемпературной выдержке, что способствует формированию более дисперсной структуры мартенсита.

Легирование молибденом в количестве до 2,2% повышает стойкость против питтинговой коррозии.

Для обеспечения наиболее высоких прочностных характеристик следует обеспечивать формирование однородной мартенситной структуры с минимальным количеством остаточного аустенита, при отсутствии феррита. Это достигается, в частности, при содержании в стали никеля в количестве 1,8-5,5%. К дополнительному повышению твердости и, соответственно, прочности приводит формирование мелкодисперсной структуры мартенсита за счет присутствия при нагреве под прокатку и формирования в процессе горячей прокатки субмикронных частиц комплексного карбонитрида, количество которых увеличивается с повышением содержания в стали азота.

Нагрев под прокатку в интервале температур 1200-1300°C необходим для достаточного растворения карбонитридных выделений с целью их последующего выделения при прокатке, приводящего к измельчению зерна и повышению прочности.

При нагреве под закалку до температур 900-1100°C микроструктура стали полностью аустенитная, что должно приводить к формированию после закалки преимущественно мартенситной структуры с некоторым количеством остаточного аустенита.

При нагреве под закалку ниже 900°C есть опасность попасть в двухфазную область, что недопустимо. При нагреве под закалку выше 1100°C существует вероятность существенного роста аустенитного зерна из-за растворения сдерживающих его рост выделений карбидов и карбонитридов и, как следствие, получение крупной мартенситной структуры после закалки, что отрицательно отразится на прочностных свойствах.

После закалки сталь подвергается отпуску при температуре 400-600°C, при котором не происходит распада остаточного аустенита из-за наличия в стали легирующих элементов, стабилизирующих аустенит (Ni, Mn, N). В то же время образование дисперсных карбидов при отпуске стали способствует снижению концентрации углерода в твердом растворе аустенита, что повышает точку начала мартенситного превращения и способствует превращению остаточного аустенита в мартенсит при охлаждении образцов после отпуска.

Отпуск при температуре ниже 400°C не даст необходимого эффекта образования дисперсных карбидов и превращения остаточного аустенита в мартенсит, а при температуре выше 600°C есть опасность образования крупных карбидов хрома и обеднения матрицы по хрому с соответствующим снижением коррозионной стойкости.

Примеры конкретного выполнения способа

Восемь вариантов хромистой стали (химический состав приведен в таблице 1) были получены в лабораторных условиях. С температуры 1200°C осуществлялась горячая прокатка на лабораторном стане на толщину 4 мм с последующей имитацией смотки в рулон. Из стали каждой плавки было получено по 4 экспериментальных образца проката, различающихся вариантами термообработки (таблица 2).

Закалка 900°C - отпуск 400°C.

Закалка 900°C - отпуск 600°C.

Закалка 1050°C - отпуск 400°C.

Закалка 1050°C - отпуск 600°C.

На образцах стали проводили металлографические исследования и механические испытания. Стойкость сталей против питтинговой коррозии исследовали по ГОСТ 9.912-89 при использовании электрохимического метода в водном растворе хлорида натрия концентрацией 16,5 г/л. Критерием стойкости против питтинговой коррозии был базис питтингостойкости (ΔEп.о), мВ, который вычисляли по формуле (1):

где Eп.о. - потенциал питтингообразования;

Eкор - потенциал свободной коррозии.

Если сравнить варианты стали между собой, то наиболее высокие значения прочности получены для сталей вариантов 2, 4, 7 и 8. В стали указанных вариантов из-за повышенного содержания азота при нагреве под прокатку присутствует большее количество комплексного карбонитрида, частицы которого тормозят рост аустенитного зерна. Кроме того, для стали тех же вариантов в процессе горячей прокатки происходит образование большого количества субмикронных частиц комплексного карбонитрида, которые тормозят рекристаллизационные процессы и способствуют формированию мелкодисперсной мартенситной структуры. Наибольшие показатели относительного удлинения получены для стали варианта 8.

Таким образом, для обеспечения наиболее высоких прочностных характеристик следует формировать однородную мартенситную структуру с минимальным количеством остаточного аустенита при отсутствии феррита. Это достигается, в частности, при повышенном содержании в стали никеля и азота. К дополнительному повышению твердости и, соответственно, прочности приводит формирование мелкодисперсной структуры мартенсита за счет присутствия при нагреве под прокатку и формирования в процессе горячей прокатки субмикронных частиц комплексного карбонитрида, количество которых увеличивается с повышением содержания в стали азота.

Основные выводы по данным электрохимического исследования питтингостойкости следующие: наиболее стойкими к локальной коррозии в выбранной испытательной среде оказались образцы сталей вариантов 2, 3 и 8 с повышенным содержанием молибдена. Таким образом, подтверждена целесообразность легирования разрабатываемой стали молибденом до 2,2%.

Влияние режимов термообработки на коррозионную стойкость можно объяснить следующим образом. В процессе отпуска при 600°C происходит распад мартенсита и интенсивное выделение карбидов хрома, что приводит к снижению коррозионной стойкости как из-за формирования гетерогенной структуры (мартенсит отпуска), так и из-за обеднения твердого раствора по хрому. В процессе отпуска при 400°C распада мартенсита и образования карбидов хрома не происходит.

Комплекс проведенных коррозионных испытаний позволяет заключить, что повышенное содержание азота и молибдена в сочетании с закалкой 900-1050°C и отпуском при 400°C позволяет получить сталь с высокой стойкостью против питтинговой коррозии в условиях морской воды континентального шельфа и материкового стока, а также в условиях тающих льдов.

Наиболее высокую стойкость против питтинговой коррозии показали стали с повышенным содержанием молибдена. Другим условием обеспечения высокой коррозионной стойкости является минимальное содержание в стали остаточного аустенита. Таким образом, формирование преимущественно мартенситной структуры путем оптимизации химического состава стали и режима термической обработки - закалка с отпуском при 400°C обеспечивает и высокие прочностные характеристики, и коррозионную стойкость.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 66.
19.01.2018
№218.016.0ec4

Способ изготовления холоднокатаной двухфазной феррито-мартенситной стали, микролегированной ниобием

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа...
Тип: Изобретение
Номер охранного документа: 0002633196
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f0d

Способ получения листовой плакированной стали

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано при строительстве железнодорожных мостов, а также в нефтехимической промышленности. Заявлен способ изготовления листов из плакированной стали. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002633412
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.10e7

Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа...
Тип: Изобретение
Номер охранного документа: 0002633858
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.134d

Способ производства листовой плакированной стали

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано для строительства железнодорожных мостов, а также для оборудования нефтехимической промышленности. Способ производства листовой плакированной стали включает...
Тип: Изобретение
Номер охранного документа: 0002634522
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.224b

Способ получения высокопрочной коррозионностойкой плакированной стали

Изобретение относится к области металлургии, к способам получения листовых плакированных сталей и может быть использовано при изготовлении сварных конструкций и оборудования для химической, нефтехимической, нефтеперерабатывающей, коксохимической и других отраслей промышленности. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002642242
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.367f

Способ лечения послеродового эндометрита с использованием внутриматочного введения формованного сорбента внииту-1 пвп

Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для лечения послеродового, в том числе послеоперационного, эндометрита у женщин. Для этого внутриматочно пятикратно на 24 часа вводят стерильный формованный сорбент «Всероссийский...
Тип: Изобретение
Номер охранного документа: 0002646496
Дата охранного документа: 05.03.2018
16.01.2019
№219.016.aff5

Способ производства круглого проката из конструкционных легированных сталей для холодной объёмной штамповки крепёжных изделий

Изобретение относится к области металлургии, конкретно к способам производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката осуществляют нагрев заготовки до температуры 1080-1200°С,...
Тип: Изобретение
Номер охранного документа: 0002677038
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b081

Способ производства круглого проката из легированных сталей для изготовления крепёжных изделий холодным деформированием

Изобретение относится к области металлургии, конкретно к способу производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката проводят нагрев заготовки до температуры 1080-1200°С,...
Тип: Изобретение
Номер охранного документа: 0002677037
Дата охранного документа: 15.01.2019
11.03.2019
№219.016.dbc8

Расплав на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности нанесения покрытий из расплавов на основе цинка на стальную полосу. Расплав содержит 0,003-0,03 мас.% индия, 0,84-5,24 мас.% алюминия, 0,6-3,74 мас.% магния при соотношении алюминия к магнию 1,4:1, и цинк -...
Тип: Изобретение
Номер охранного документа: 0002470088
Дата охранного документа: 20.12.2012
13.03.2019
№219.016.dea3

Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных нефтепромысловых труб. Сталь содержит компоненты при следующем соотношении, маc.%: углерод 0,05-0,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002681588
Дата охранного документа: 11.03.2019
Показаны записи 51-60 из 72.
19.01.2018
№218.016.0ec4

Способ изготовления холоднокатаной двухфазной феррито-мартенситной стали, микролегированной ниобием

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа...
Тип: Изобретение
Номер охранного документа: 0002633196
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f0d

Способ получения листовой плакированной стали

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано при строительстве железнодорожных мостов, а также в нефтехимической промышленности. Заявлен способ изготовления листов из плакированной стали. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002633412
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.10e7

Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа...
Тип: Изобретение
Номер охранного документа: 0002633858
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.134d

Способ производства листовой плакированной стали

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано для строительства железнодорожных мостов, а также для оборудования нефтехимической промышленности. Способ производства листовой плакированной стали включает...
Тип: Изобретение
Номер охранного документа: 0002634522
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.224b

Способ получения высокопрочной коррозионностойкой плакированной стали

Изобретение относится к области металлургии, к способам получения листовых плакированных сталей и может быть использовано при изготовлении сварных конструкций и оборудования для химической, нефтехимической, нефтеперерабатывающей, коксохимической и других отраслей промышленности. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002642242
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.367f

Способ лечения послеродового эндометрита с использованием внутриматочного введения формованного сорбента внииту-1 пвп

Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для лечения послеродового, в том числе послеоперационного, эндометрита у женщин. Для этого внутриматочно пятикратно на 24 часа вводят стерильный формованный сорбент «Всероссийский...
Тип: Изобретение
Номер охранного документа: 0002646496
Дата охранного документа: 05.03.2018
19.12.2018
№218.016.a87d

Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью

Изобретение относится к области металлургии, конкретнее, для получения рулонного полосового проката с низкой скоростью коррозии при сохранении уровня прочностных и пластических характеристик, соответствующего категории прочности К52, осуществляют аустенизацию заготовки при 1200-1280°С, черновую...
Тип: Изобретение
Номер охранного документа: 0002675307
Дата охранного документа: 18.12.2018
01.03.2019
№219.016.cb15

Сталь повышенной коррозионной стойкости

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей повышенной коррозионной стойкости для производства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости. Сталь содержит углерод, марганец, кремний, хром, никель, медь,...
Тип: Изобретение
Номер охранного документа: 0002344194
Дата охранного документа: 20.01.2009
11.03.2019
№219.016.ddc8

Коррозионностойкий высокопрочный инварный сплав

Изобретение относится к металлургии, к составам коррозионностойких инварных сплавов, и может быть использовано в авиационной, криогенной технике, судостроении, а также для создания конструкций и приборов наземного, морского базирования, работающих в условиях повышенной влажности и морского...
Тип: Изобретение
Номер охранного документа: 0002468108
Дата охранного документа: 27.11.2012
13.03.2019
№219.016.dea3

Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных нефтепромысловых труб. Сталь содержит компоненты при следующем соотношении, маc.%: углерод 0,05-0,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002681588
Дата охранного документа: 11.03.2019
+ добавить свой РИД