Вид РИД
Изобретение
Изобретение относится к химической промышленности и может быть использовано, в частности, для проведения химического процесса получения синтетического жидкого топлива.
Известна установка для получения синтетических жидких топлив (СЖТ) из метана угольных пластов. Установка для получения СЖТ включает линию подачи сырьевого потока - метанола, линию циркуляционного газа, дренажную линию, линию отвода СЖТ, узел получения модельного синтез-газа и узел получения СЖТ в виде блока конверсии модельного синтез-газа. Связанные в технологическую цепь компрессор, подогреватель, реакторы каталитической конверсии синтез-газа, холодильник-конденсатор и трехфазный сепаратор образуют блок конверсии модельного синтез-газа в СЖТ. Между холодильником-конденсатором и трехфазным сепаратором встроен двухфазный сепаратор. Узел получения модельного синтез-газа содержит блок разложения сырьевого потока - метанола и сепаратор. Прием компрессора сообщен с газовым выходом сепаратора узла получения модельного синтез-газа. Блок разложения сырьевого потока - метанола выполнен в виде связанных между собой испарителя, двух реакторов разложения сырьевого потока - метанола, холодильника-конденсатора, смесителя. В установке блок конверсии модельного синтез-газа в СЖТ содержит два реактора каталитической конверсии синтез-газа (Патент RU 61278 U1, МПК C07C 1/04 (2006.01), опубл. 27.02.2007).
Задачей, на решение которой направлено заявленное техническое решение, является создание установки получения синтетического жидкого топлива, обеспечивающей исключение стадии извлечения целевых продуктов синтеза из отходящих газов в частности и упрощение процесса получения синтетических жидких топлив в целом.
Технический результат, на который направлено заявленное изобретение, заключается в упрощении технологического процесса получения синтетических жидких топлив за счет организации самообеспечения отдельных технологических стадий водородсодержащим газом (очистки сырьевого газа от соединений серы, гидроочистки и гидрооблагораживания синтетических жидких углеводородов (СЖУ)), исключения стадии извлечения целевых продуктов синтеза из отходящих газов (за счет подачи отходящих газов в секцию стабилизации СЖУ), а также за счет проведения гидроочистки и гидрооблагораживания СЖУ без предварительного фракционирования.
Указанный технический результат достигается за счет создания установки получения синтетического жидкого топлива, в состав которой входят блок адсорбционной очистки сырьевого газа от соединений серы, блок конверсии метана в синтез-газ, блок очистки синтез-газа от CO2, блок синтеза жидких углеводородов, блок стабилизации синтетических жидких углеводородов (СЖУ), блок гидроочистки СЖУ, блок гидрооблагораживания СЖУ, блок фракционирования синтетического жидкого топлива (СЖТ), блок водооборота и блок циркуляции водорода, причем первый вход блока адсорбционной очистки сырьевого газа от соединений серы связан с линией подачи сырьевого природного газа из заводской сети, второй вход связан с линией подачи водородсодержащего газа из блока синтеза жидких углеводородов, третий вход связан с первой линией подачи топливного газа из блока циркуляции водорода, кроме того, блок адсорбционной очистки сырьевого природного газа имеет выход очищенного природного газа, связанный с первым входом блока конверсии метана в синтез-газ, при этом блок конверсии метана в синтез-газ имеет второй вход - вход технического кислорода, третий вход, связанный с линией подачи CO2 из блока очистки синтез-газа от CO2, четвертый вход, связанный с линией подачи перегретого пара из блока водооборота, первый вход которого связан с линией подачи водяного конденсата из блока конверсии метана в синтез-газ, второй вход блока водооборота связан с линией подачи конденсата пара для регенерации диэтаноламина (ДЭА) из блока очистки синтез-газа от CO2, третий вход связан с линией подачи реакционной воды из блока синтеза жидких углеводородов, четвертый вход связан с линией подачи пара из блока синтеза жидких углеводородов, пятый вход связан с линией подачи водяного конденсата из блока стабилизации СЖУ, а шестой вход связан с линией подачи водяного конденсата из блока фракционирования СЖТ, первый вход блока очистки синтез-газа от CO2 связан с линией подачи синтез-газа, содержащего CO2, из блока конверсии метана в синтез-газ, а второй вход блока очистки синтез-газа от CO2 связан с линией подачи пара для регенерации раствора ДЭА из блока водооборота, первый вход блока циркуляции водорода связан с линией подачи газа стабилизации из блока стабилизации СЖУ, второй вход связан с линией подачи смеси водорода и углеводородных газов из блока гидроочистки СЖУ, третий вход связан с линией подачи газа сепарации из блока гидрооблагораживания СЖУ, четвертый вход связан с линией подачи газа сепарации из блока фракционирования СЖТ, первый вход блока синтеза жидких углеводородов связан с линией подачи перегретой котловой воды из блока водооборота, второй вход связан с второй линией подачи топливного газа из блока циркуляции водорода, а третий вход связан с линией подачи очищенного от CO2 синтез-газа из блока очистки синтез-газа от CO2, первый вход блока стабилизации СЖУ связан с третьей линией подачи топливного газа из блока циркуляции водорода, второй вход - с линией подачи нестабильных СЖУ из блока синтеза жидких углеводородов, третий вход - с линией подачи отходящего газа из блока синтеза жидких углеводородов, а четвертый вход - с линией подачи пропана, первый вход блока гидроочистки СЖУ связан с линией подачи стабильной широкой фракции СЖУ из блока стабилизации СЖУ, а второй вход - с линией подачи циркуляционного водорода из блока гидрооблагораживания СЖУ, первый вход которого связан с линией подачи гидроочищенной широкой фракции СЖУ из блока гидроочистки СЖУ, второй вход связан с линией подачи очищенного водорода из блока циркуляции водорода, третий вход связан с четвертой линией подачи топливного газа из блока циркуляции водорода, а четвертый вход связан с линией подачи фракции СЖТ 360-540°C на рецикл из блока фракционирования СЖТ, при этом первый вход блока фракционирования СЖТ связан с линией подачи пара из блока водооборота, второй вход - с пятой линией подачи топливного газа из блока циркуляции водорода, а третий вход - с линией подачи широкой фракции СЖТ из блока гидрооблагораживания СЖУ, причем блок очистки синтез-газа от CO2 имеет выход для вывода CO2 в атмосферу, блок циркуляции водорода имеет выход для подачи избытка топливного газа в заводскую сеть, блок водооборота имеет выход для подачи избытка пара из блока водооборота в заводскую сеть, а блок фракционирования СЖТ имеет выход фракций СЖТ: «начало кипения» - 150°C, 150-180°C, 180-280°C, 280-360°C и 360-540°C для дальнейшего их использования в качестве компонентов топлива.
Сущность изобретения поясняется чертежом.
Установка получения синтетического жидкого топлива (СЖТ) включает в себя десять основных блоков:
- блок 1 адсорбционной очистки газа от соединений серы;
- блок 2 конверсии метана в синтез-газ;
- блок 3 очистки синтез-газа от CO2;
- блок 4 синтеза жидких углеводородов;
- блок 5 стабилизации СЖУ;
- блок 6 гидроочистки СЖУ;
- блок 7 гидрооблагораживания СЖУ;
- блок 8 фракционирования СЖТ;
- блок 9 водооборота;
- блок 10 циркуляции водорода.
Блок 1 адсорбционной очистки газа от соединений серы включает в себя печь, реактор гидрирования и адсорберы. Блок 2 конверсии метана в синтез-газ включает в себя сатуратор, рекуперативные теплообменники, реакторы, аппараты воздушного охлаждения, сепаратор. Блок 3 очистки синтез-газа от CO2 включает в себя абсорбер, десорбер, экспанзер, рекуперативные теплообменники, аппарат воздушного охлаждения, сепаратор и паровой испаритель. Блок 4 синтеза жидких углеводородов включает в себя печь, реактор синтеза, рекуперативные теплообменники, аппарат воздушного охлаждения, сепаратор, мембранную установку выделения водорода и компрессор. Блок 5 стабилизации СЖУ включает в себя печь, ректификационную колонну, рекуперативные теплообменники, пропановый холодильник и сепаратор. Блок 6 гидроочистки СЖУ включает в себя реактор, аппарат воздушного охлаждения, сепаратор и насосы. Блок 7 гидрооблагораживания СЖУ включает в себя печь, реактор, рекуперативные теплообменники, аппарат воздушного охлаждения, сепараторы и насосы. Блок 8 фракционирования СЖТ включает в себя печь, ректификационную колонну, отпарные колонны, рекуперативные теплообменники, аппараты воздушного охлаждения, сепараторы и насосы. Блок 10 циркуляции водорода содержит аппарат воздушного охлаждения, сепаратор, адсорберы, компрессоры.
Блок 1 адсорбционной очистки сырьевого газа от серы имеет три входа: первый вход - вход 11 сырьевого природного газа из заводской сети, второй вход, связанный с линией 25 подачи водородсодержащего газа из блока синтеза жидких углеводородов, третий вход, связанный с первой линией 48 подачи топливного газа из блока циркуляции водорода, также блок 1 адсорбционной очистки сырьевого газа имеет выход 12 очищенного природного газа, связанный с первым входом блока 2 конверсии метана в синтез-газ. При этом блок 2 конверсии метана в синтез-газ имеет еще три входа: второй вход - вход 13 технического кислорода, третий вход, связанный с линией 16 подачи углекислого газа из блока 3 очистки синтез-газа от CO2, и четвертый вход, связанный с линией 14 подачи перегретого пара из блока 9 водооборота. Блок 9 водооборота в свою очередь имеет шесть входов: первый вход, связанный с линией 17 подачи водяного конденсата из блока конверсии метана в синтез-газ, второй вход, связанный с линией 19 подачи конденсата пара для регенерации диэтаноламина (ДЭА) из блока 3 очистки синтез-газа от CO2, третий вход, связанный с линией 23 подачи реакционной воды из блока 4 синтеза жидких углеводородов, четвертый вход, связанный с линией 24 подачи пара из блока 4 синтеза жидких углеводородов, пятый вход, связанный с линией 29 подачи водяного конденсата из блока 5 стабилизации СЖУ, и шестой вход, связанный с линией 41 подачи водяного конденсата из блока 8 фракционирования синтетического жидкого топлива (СЖТ). Блок 3 очистки синтез-газа от CO2 имеет два входа: первый вход связан с линией 15 подачи синтез-газа, содержащего CO2, из блока 2 конверсии метана в синтез-газ, а второй вход - с линией 18 подачи пара для регенерации раствора ДЭА из блока 9 водооборота. Блок 10 циркуляции водорода имеет четыре входа: первый вход, связанный с линией 30 подачи газа стабилизации из блока 5 стабилизации СЖУ, второй вход, связанный с линией 34 подачи смеси водорода и углеводородных газов из блока 7 гидроочистки СЖУ, третий вход, связанный с линией 38 подачи газа сепарации из блока 7 гидрооблагораживания СЖУ, и четвертый вход, связанный с линией 40 подачи газа сепарации из блока 8 фракционирования СЖТ. Блок 4 синтеза жидких углеводородов имеет три входа: первый вход, связанный с линией 22 подачи перегретой котловой воды из блока 9 водооборота, второй вход, связанный со второй линией 49 подачи топливного газа из блока 10 циркуляции водорода, и третий вход, связанный с линией 21 подачи очищенного от CO2 синтез-газа из блока 3 очистки синтез-газа от CO2. Блок 5 стабилизации СЖУ имеет четыре входа: первый вход, связанный с третьей 50 линией подачи топливного газа из блока 10 циркуляции водорода, второй вход, связанный с линией 27 подачи нестабильных СЖУ из блока 4 синтеза жидких углеводородов, третий вход, связанный с линией 26 подачи отходящего газа из блока 4 синтеза жидких углеводородов, и четвертый вход, связанный с линией 28 подачи пропана. Блок 6 гидроочистки СЖУ имеет два входа: первый вход, связанный с линией 31 подачи стабильной широкой фракции СЖУ из блока 5 стабилизации СЖУ, и второй вход, связанный с линией 32 подачи циркуляционного водорода из блока 7 гидрооблагораживания СЖУ. Первый вход блока 7 гидрооблагораживания СЖУ связан с линией 33 подачи гидроочищенной широкой фракции СЖУ из блока 6 гидроочистки СЖУ, второй вход - с линией 35 подачи очищенного водорода из блока 10 циркуляции водорода, третий вход - с четвертой линией 51 подачи топливного газа из блока циркуляции водорода, а четвертый вход - с линией 36 подачи фракции СЖТ 360-540°C на рецикл из блока 8 фракционирования СЖТ. При этом первый вход блока 8 фракционирования СЖТ связан с линией 39 подачи пара из блока водооборота, второй вход - с пятой линией 52 подачи топливного газа из блока циркуляции 10 водорода, а третий вход - с линией 37 подачи широкой фракции СЖТ из блока 7 гидрооблагораживания СЖУ. Блок 3 очистки синтез-газа от CO2 имеет линию 20 для вывода CO2 в атмосферу, блок 10 циркуляции водорода имеет линию 53 для подачи избытка топливного газа в заводскую сеть, блок водооборота имеет линию 47 для подачи избытка пара из блока водооборота в заводскую сеть, а блок фракционирования СЖТ имеет линии 42-46 выхода фракций СЖТ: «начало кипения» - 150°C, 150-180°C, 180-280°C, 280-360°C и 360-540°C для дальнейшего их использования в качестве компонентов топлива.
Установка работает следующим образом.
Сырьевой природный газ по линии 11 поступает в блок 1 адсорбционной очистки газа от соединений серы из заводской сети с давлением не более 6,0 МПа и температурой не более 40°C, дросселируется и смешивается с водородсодержащим газом, поступающим по линии 25 из блока 4 синтеза СЖУ. Полученная смесь водородсодержащего и природного газа нагревается в печи до температуры 370°C за счет тепла, образующегося при сжигании топливного газа, последовательно проходит стадию каталитического гидрирования серосодержащих органических соединений до сероводорода и его поглощение адсорбентом на основе оксида цинка. Топливный газ по линии 48 поступает из блока 10 циркуляции водорода.
Очищенный природный газ с содержанием сернистых соединений не более 0,5 ppm по линии 12 направляется в блок 2 конверсии метана в синтез-газ, где за счет взаимодействия углеводородных компонентов природного газа с паром, диоксидом углерода и кислородом при температурах 850-1100°C проходят реакции образования смеси оксида углерода и водорода (синтез-газа). При охлаждении полученной смеси образуется водяной конденсат, который направляется по линии 17 в блок 9 водооборота.
Необходимый для процесса производства синтез-газа технический кислород по линии 13 поступает из блока разделения воздуха (не показан) с избыточным давлением не более 4,0 МПа, необходимый пар поступает по линии 14 из блока 9 водооборота.
Охлажденный синтез-газ по линии 15 направляется в блок 3 очистки синтез-газа от CO2, где в колонне насадочного типа протекает абсорбционная очистка синтез-газа раствором диэтаноламина (ДЭА) от содержащегося в нем диоксида углерода. Регенерация насыщенного раствора ДЭА проводится в десорбере - колонне насадочного типа. Тепло, необходимое для регенерации насыщенного раствора ДЭА, сообщается раствору в рибойлерах, обогреваемых глухим паром 18 низкого давления, который поступает из блока 9 водооборота. Конденсат пара по линии 19 направляется в блок 9 водооборота.
Часть выделяющегося при десорбции из насыщенного раствора ДЭА диоксида углерода компримируется и направляется по линии 16 в блок 2 конверсии метана в синтез-газ. Избыточные объемы диоксида углерода по линии 20 сбрасываются в атмосферу.
Очищенный синтез-газ по линии 21 направляется в блок 4 синтеза СЖУ, где смешивается с потоком газа циркуляции, нагревается в печи за счет тепла, образующегося при сжигании топливного газа, поступающего по линии 49, и проходит последовательно три ступени синтеза углеводородов на кобальтсодержащем катализаторе синтеза Фишера-Тропша при температуре 210°C-220°C и давлении 2,0÷2,5 МПа.
Для поддержания постоянного температурного режима работы реакторов синтеза в рубашки реакторов из блока 9 водооборота по линии 22 подается вода, перегретая до температуры проведения реакции. Образующийся в результате отвода тепла реакции пар по линии 24 направляется в блок 9 водооборота.
После каждой ступени синтеза полученная газожидкостная смесь охлаждается, затем разделяется на жидкую и газовую фазы. Газовые фазы, выходящие из первой и второй ступени синтеза, нагреваются в рекуперативных теплообменниках и направляются на следующую ступень синтеза. Газовая фаза, выходящая из третьей ступени синтеза, делится на два потока - газ циркуляции и отходящий газ.
Отходящий газ по линии 26 направляется в блок 5 стабилизации СЖУ для извлечения из него углеводородов С5+, а газ циркуляции поступает на мембранную установку, где проходит частичное выделение из газового потока водородсодержащего газа. Водородсодержащий газ по линии 25 направляется в блок 1 адсорбционной очистки природного газа от серы. Поток газа циркуляции после выделения водородсодержащего газа поступает на смешение с очищенным синтез-газом.
Жидкая фаза со всех трех ступеней синтеза разделяется на нестабильные синтетические жидкие углеводороды и реакционную воду (побочный продукт синтеза). Реакционная вода по линии 23 направляется на водоочистку в блок 9 водооборота, а нестабильные синтетические жидкие углеводороды по линии 27 - в блок 5 стабилизации СЖУ.
Процесс стабилизации проводится в ректификационной колонне-стабилизаторе тарельчатого типа с предварительным рекуперативным нагревом сырья при давлении около 1,9-2,0 МПа и температуре верха колонны на уровне приблизительно +43°C, низа +317°C. Для охлаждения дефлегматора используется пропановый холодильник, для подогрева куба колонны используется огневая печь.
Необходимый для процесса стабилизации топливный газ по линии 50 поступает из блока 10 циркуляции водорода, а пропан по линии 28 - из блока получения пропана (не показан).
Пары с верха стабилизатора охлаждаются, конденсируются и разделяются на газовую (газ стабилизации), углеводородную и водную фазы (водяной конденсат). Газ стабилизации, содержащий водород, по линии 30 направляется в блок 10 циркуляции водорода. Углеводородная фаза подается на орошение колонны-стабилизатора, а водяной конденсат по линии 29 направляется на очистку в блок 9 водооборота.
Из нижней части стабилизатора выводится балансовое количество стабильной широкой фракции СЖУ, которое по линии 31 направляется в блок 6 гидроочистки СЖУ.
Поток стабильной широкой фракции СЖУ смешивается с циркуляционным водородом, поступающим по линии 32 из блока 7 гидрооблагораживания СЖУ, и подвергается гидроочистке от непредельных углеводородов при температуре 150°C и давлении 1,5 МПа на катализаторе гидроочистки.
Полученная газопродуктовая смесь охлаждается и разделяется на газовую (смесь водорода и углеводородных газов) и жидкую фазы (гидроочищенная широкая фракция СЖУ).
Смесь водорода и углеводородных газов из блока 6 направляется по линии 34 в блок 10 циркуляции водорода на смешение с газом стабилизации, поступающим по линии 30, и последующую очистку от углеводородов, а гидроочищенная широкая фракция СЖУ по линии 33 направляется в блок 7 гидрооблагораживания СЖУ.
Гидроочищенная широкая фракция СЖУ смешивается с очищенным водородом, поступающим по линии 35 из блока 10 циркуляции водорода, и затем направляется на смешение с фракцией СЖТ 360-540°C, возвращающейся по линии 36 в качестве рецикла из блока 8 фракционирования СЖТ.
Полученная смесь гидроочищенных СЖУ, фракции СЖТ 360-540°C и водорода нагревается в печи до температуры начала реакции за счет тепла, образующегося при сжигании топливного газа 51, и подается на стадию гидрооблагораживания, где при температуре 350°C и давлении 5 МПа на катализаторе гидрооблагораживания в результате протекания реакций крекинга и изомеризации углеводородов происходят структурные изменения состава смеси.
Газожидкостная смесь после стадии гидрооблагораживания охлаждается, частично конденсируется и поступает на стадию двухступенчатой сепарации для отделения непрореагировавшего водорода и газа сепарации, образовавшегося в результате каталитических процессов.
Выделившийся водород из блока 7 гидрооблагораживания СЖУ после сброса давления по линии 32 направляется в блок 6 гидроочистки СЖУ. Газ сепарации по линии 38 подается в блок 10 циркуляции водорода, в линию топливного газа.
Широкая фракция СЖТ по линии 37 подается для разделения на узкие топливные фракции в блок 8 фракционирования СЖТ, где нагревается в печи до температуры 330°C за счет тепла, образующегося при сжигании топливного газа, и под давлением 0,8 МПа направляется в колонну ректификации для разделения на фракции СЖТ 42-46: НК-150°C, 150-180°C, 180-280°C, 280-360°C и 360-540°C. Топливный газ по линии 52 поступает из блока 10 циркуляции водорода.
Пары фракции НК-150°C (НК - начало кипения) отводятся с верха колонны, охлаждаются и поступают в трехфазный сепаратор, где происходит отделение газовой фазы от жидкости, а также водяного конденсата от жидких углеводородов. При этом газ сепарации по линии 40 направляется в блок 10 циркуляции водорода, водяной конденсат по линии 41 направляется на очистку в блок 9 водооборота, жидкая фаза углеводородов подается на орошение колонны, а ее избыточные объемы выводятся с установки в виде фракции СЖТ НК-150°C.
Фракции СЖТ 150-180°C, 180-280°C, 280-360°C отбираются из колонны в качестве боковых погонов. Фракция СЖТ 360-540°C из нижней части колонны подается в качестве рецикла по линии 36 в блок 7 гидрооблагораживания СЖУ с возможностью вывода этой фракции с установки.
Для улучшения отпарки легких фракций в нижнюю часть колонны подается острый водяной пар по линии 39 из блока 9 водооборота.
Блок 10 циркуляции водорода выполняет функции организации рецикла водорода и подготовки топливного газа для его дальнейшего использования на различных стадиях производства. При этом осуществляется очистка водорода от примесей на базе установки короткоцикловой адсорбции, входящей в состав блока. Избыток топливного газа 53 направляется в заводскую сеть.
Блок водооборота служит для сбора реакционной воды и водяного конденсата, образующихся на различных стадиях производства, их очистки и подготовки для повторного использования в технологических процессах, а также для производства пара с необходимыми параметрами. Избыток пара 47 направляется в заводскую сеть.
Установка получения синтетического жидкого топлива, в состав которой входят блок адсорбционной очистки сырьевого газа от соединений серы, блок конверсии метана в синтез-газ, блок очистки синтез-газа от CO, блок синтеза жидких углеводородов, блок стабилизации синтетических жидких углеводородов (СЖУ), блок гидроочистки СЖУ, блок гидрооблагораживания СЖУ, блок фракционирования синтетического жидкого топлива (СЖТ), блок водооборота и блок циркуляции водорода, причем первый вход блока адсорбционной очистки сырьевого газа от соединений серы связан с линией подачи сырьевого природного газа из заводской сети, второй вход связан с линией подачи водородсодержащего газа из блока синтеза жидких углеводородов, третий вход связан с первой линией подачи топливного газа из блока циркуляции водорода, кроме того, блок адсорбционной очистки сырьевого природного газа имеет выход очищенного природного газа, связанный с первым входом блока конверсии метана в синтез газ, при этом блок конверсии метана в синтез-газ имеет второй вход - вход технического кислорода, третий вход, связанный с линией подачи CO из блока очистки синтез-газа от CO, четвертый вход, связанный с линией подачи перегретого пара из блока водооборота, первый вход которого связан с линией подачи водяного конденсата из блока конверсии метана в синтез-газ, второй вход блока водооборота связан с линией подачи конденсата пара для регенерации диэтаноламина (ДЭА) из блока очистки синтез-газа от CO, третий вход связан с линией подачи реакционной воды из блока синтеза жидких углеводородов, четвертый вход связан с линией подачи пара из блока синтеза жидких углеводородов, пятый вход связан с линией подачи водяного конденсата из блока стабилизации СЖУ, а шестой вход связан с линией подачи водяного конденсата из блока фракционирования СЖТ, первый вход блока очистки синтез-газа от CO связан с линией подачи синтез-газа, содержащего CO, из блока конверсии метана в синтез-газ, а второй вход блока очистки синтез-газа от CO связан с линией подачи пара для регенерации раствора ДЭА из блока водооборота, первый вход блока циркуляции водорода связан с линией подачи газа стабилизации из блока стабилизации СЖУ, второй вход связан с линией подачи смеси водорода и углеводородных газов из блока гидроочистки СЖУ, третий вход связан с линией подачи газа сепарации из блока гидрооблагораживания СЖУ, четвертый вход связан с линией подачи газа сепарации из блока фракционирования СЖТ, первый вход блока синтеза жидких углеводородов связан с линией подачи перегретой котловой воды из блока водооборота, второй вход связан с второй линией подачи топливного газа из блока циркуляции водорода, а третий вход связан с линией подачи очищенного от CO синтез-газа из блока очистки синтез-газа от CO, первый вход блока стабилизации СЖУ связан с третьей линией подачи топливного газа из блока циркуляции водорода, второй вход - с линией подачи нестабильных СЖУ из блока синтеза жидких углеводородов, третий вход - с линией подачи отходящего газа из блока синтеза жидких углеводородов, а четвертый вход - с линией подачи пропана, первый вход блока гидроочистки СЖУ связан с линией подачи стабильной широкой фракции СЖУ из блока стабилизации СЖУ, а второй вход - с линией подачи циркуляционного водорода из блока гидрооблагораживания СЖУ, первый вход которого связан с линией подачи гидроочищенной широкой фракции СЖУ из блока гидроочистки СЖУ, второй вход связан с линией подачи очищенного водорода из блока циркуляции водорода, третий вход связан с четвертой линией подачи топливного газа из блока циркуляции водорода, а четвертый вход связан с линией подачи фракции СЖТ 360-540°C на рецикл из блока фракционирования СЖТ, при этом первый вход блока фракционирования СЖТ связан с линией подачи пара из блока водооборота, второй вход - с пятой линией подачи топливного газа из блока циркуляции водорода, а третий вход - с линией подачи широкой фракции СЖТ из блока гидрооблагораживания СЖУ, причем блок очистки синтез-газа от CO имеет выход для вывода CO в атмосферу, блок циркуляции водорода имеет выход для подачи избытка топливного газа в заводскую сеть, блок водооборота имеет выход для подачи избытка пара из блока водооборота в заводскую сеть, а блок фракционирования СЖТ имеет выход фракций СЖТ: «начало кипения» - 150°C, 150-180°C, 180-280°C, 280-360°C и 360-540°C для дальнейшего их использования в качестве компонентов топлива.