×
25.08.2017
217.015.b7b8

Результат интеллектуальной деятельности: Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот

Вид РИД

Изобретение

№ охранного документа
0002614908
Дата охранного документа
30.03.2017
Аннотация: Изобретение относится к определению технического состояния авиационных газотурбинных двигателей всех типов. Способ диагностики технического состояния подшипниковых опор газотурбинного двигателя включает установку датчиков вибрации в диагностируемом сечении на корпусе двигателя, измерение вибрационных сигналов работающего двигателя с последующим преобразованием их в амплитудно-частотный спектр, выделение в этом спектре частот вращения ротора низкого давления и ротора высокого давления, анализ полученного спектра частот с последующим определением технического состояния подшипниковых опор. Диагностику работающего двигателя производят в диапазоне частот роторов высокого и низкого давления от 45 до 1000 Гц в течение отрезка времени не менее 2 минут. Дополнительно определяют максимальные и минимальные значения амплитуд гармоник роторов, разница между которыми должна составлять не менее 20%. При наличии не менее 5 колебаний амплитуд гармоник роторов, частота колебаний которых не более 1 раза в 15 секунд и равным периодом между ними, останавливают эксплуатацию двигателя. Изобретение позволяет повысить достоверность результатов при диагностике подшипников в составе газотурбинного двигателя. 4 ил.

Изобретение относится к определению технического состояния авиационных газотурбинных двигателей всех типов, включая те, что имеют в своей конструкции межроторные и межвальные подшипники, способом вибрационной диагностики по размаху значения амплитуд роторных частот. Предлагаемый способ основан на измерении спектра вибрации работающего двигателя с помощью датчиков вибрации. В полученном спектре проводится поиск роторных составляющих и измерение размаха значения их амплитуд, по результатам которых делают вывод о неудовлетворительном состоянии подшипника.

Наиболее близким аналогом предлагаемого изобретения является способ диагностики технического состояния межроторного подшипника двухвального газотурбинного двигателя, который основывается на измерении сигналов вибрации на корпусных деталях газотурбинных двигателей (ГТД). Появление и развитие дефекта подшипника определяется по достижению амплитудного уровня сепараторной частоты не менее 2 мм/с и не более половины амплитудного уровня наибольшей из роторов высокого и низкого давления, при одновременном появлении и отчетливо выделяющихся из уровня шума разностных частот роторов высокого, низкого давления и сепараторной частоты и/или разности вторых гармоник сепараторной частоты и частот вращения роторов высокого и низкого давления. В известном способе устанавливают датчики вибрации в диагностируемом сечении на корпусе двигателя, осуществляют прием измеренных вибрационных сигналов работающего двигателя с последующим преобразованием их в амплитудно-частотный спектр, выделяют в этом спектре частот вращение ротора низкого давления и ротора высокого давления и анализируют полученный спектр частот, после чего определяют техническое состояние подшипниковых опор.

/RU 2478923 С2, G01M 13/04, G01M 15/14, 10.04.2013/ - прототип.

Однако известный способ диагностики МРП узлов опор двухроторных ГТД при практическом использовании продемонстрировал нестабильность результатов и низкую вероятность получения достоверного результата технического состояния межроторного подшипника (МРП).

Задачей предлагаемого изобретения является повышение надежности газотурбинного двигателя, безопасности его эксплуатации.

Технический результат – надежность, основанная на использовании физической модели процесса развития повреждения подшипника опоры, простота в использовании метода и полученная высокая достоверность результатов при диагностике подшипников в составе газотурбинного двигателя.

Технический результат достигается тем, что в известном способе диагностики технического состояния газотурбинного двигателя, включающем установку датчиков вибрации в диагностируемом сечении на корпусе двигателя, прием измеренных вибрационных сигналов работающего двигателя с последующим преобразованием их в амплитудно-частотный спектр, выделение в этом спектре частот вращения ротора низкого давления и ротора высокого давления и их последующих четырех гармоник, анализ полученного спектра частот с последующим определением технического состояния подшипниковых опор, по предложению диагностику работающего двигателя производят в диапазоне частот роторов высокого и низкого давления и их гармоник от 45 до 1000 Гц (Рассматривается не более четырех гармоник из-за увеличения влияния на более высоких гармониках не связанной с дефектами нелинейности системы. При максимальных частотах вращения роторов современных ГТД, не превышающих 250 Гц - данный диапазон укладывается в 1000 Гц. Значение в 45 Гц принято для исключения влияния шумов на низких частотах, и отсутствие в диапазоне от 0 до 45 Гц частот роторов при работе ГТД.) Диагностику работающего двигателя производят в течение отрезка времени не менее 2 минут (необходимое условие для подтверждения стабильности параметров колебательного процесса), дополнительно определяют максимальные и минимальные значения амплитуд гармоник роторов, для удовлетворительной оценки разница между которыми должна составлять не менее 20%, при этом при наличии не менее 5 колебаний амплитуд гармоник роторов (для определения допустимого отклонения значения параметра), частота колебаний которых не более 1 раза в 15 секунд и равным периодом между ними, останавливают эксплуатацию двигателя.

При диагностике технического состояния (неисправного) подшипниковых опор газотурбинного двигателя необходимо выполнение следующих условий:

1) Разница между максимальным и минимальным значением амплитуды колебаний не должна составлять менее 20%. В противном случае на результат могут влиять воздействия факторов, не связанных с проявлением данного повреждения подшипников, и существенно исказить полученные результаты.

2) Частота колебаний не более 1 раза в 15 секунд. Условие, позволяющее исключить изменение амплитуд вибрации на установившемся режиме, и не связанных с повреждением подшипника опор (процессы, связанные с неравномерным прогревом роторов, колебания при нормальной работе отдельных элементов роторной системы).

3) Равный период между максимальными значениями колебаний (допускается погрешность в 10%). Условие, необходимое для определения принадлежности нескольких колебаний к одному источнику колебательного процесса.

4) Колебания должны происходить как минимум на нескольких режимах работы двигателя. Условие, позволяющее исключить влияние колебаний, вызванных источниками, не связанными с роторной системой двигателя.

Диагностика технического состояния подшипников играет решающую роль при определении технического состояния газотурбинного двигателя в целом, поскольку при отказе любого из подшипников происходит отказ работоспособности двигателя. При его разрушении может произойти возгорание двигателя или пробивание его корпуса оторвавшимися элементами ротора, что повышает риск жизни экипажа, снижает безопасность выполнения полетного задания, и в самом критическом случае может привести к потере самолета и экипажа.

При вращении ротора с дефектом опоры происходит взаимодействие деталей подшипника с повреждениями на дорожках и телах качения. В результате этого происходит постоянное изменение (перемещение) вектора вибрации и перераспределение энергии вибрации первой гармоники ротора на увеличение амплитуд высших гармоник и формирование новых. Из этого можно сделать вывод, что данный процесс сказывается на изменении амплитуд роторов, которое, в отличие от исправного состояния опоры, имеет периодически изменяющийся характер.

Изобретение проиллюстрировано фигурами 1-4.

Фиг. 1 - 3D спектрограмма двигателя с дефектом подшипника (ось x -время, ось y - частота, ось z - амплитуда).

Фиг. 2 - спектрограмма исправного двигателя (ось x - время, ось y - частота).

Фиг. 3 - спектрограмма двигателя с дефектом подшипника (ось x - время, ось y - частота).

Фиг. 4 - 3D спектрограмма частоты ротора высокого давления(ось x - время, ось y - частота, ось z - амплитуда).

Предлагаемое изобретение реализуют следующим образом.

Устанавливают датчики вибрации в диагностируемом сечении на корпусе двигателя, после чего осуществляют прием измеренных вибрационных сигналов работающего двигателя с последующим преобразованием их в амплитудно-частотный спектр.

При запуске ГТД, примерно через 1 минуту (время запуска двигателя) в рабочем диапазоне частот от 45 до 1000 Гц выполняется поиск частот роторов высокого и низкого давления и их кратных гармоник в спектре вибрации. Поиск первых гармоник производится из сравнения ранее известных значений частот вращения роторов данного типа двигателей со значениями в спектре вибрации, в данном диапазоне. При обнаружении этих частот выполняется поиск кратных гармоник, т.е. выполняется умножение значения в герцах найденной частоты одного ротора на 2, 3, 4, 5 и определяются в спектре, затем другого ротора, по такому же принципу. Диагностику работающего двигателя производят в течение отрезка времени не менее 2 минут. Дополнительно определяют максимальные и минимальные значения амплитуд гармоник роторов, разница между которыми должна составлять не менее 20%. При этом при наличии не менее 5 колебаний амплитуд гармоник роторов, частота колебаний которых не более 1 раза в 15 секунд и равным периодом между ними, останавливают эксплуатацию двигателя.

Значение амплитуды первой гармоники при исправной работе ГТД практически не изменяется. При дефекте подшипников из-за сложности колебательного процесса ротора (относительно оси вращения (прецессия ротора)) кинетическая энергия остаточного дисбаланса ротора, которая и создает первую гармонику, перераспределяется (затрачивается) на повышение амплитуд более высоких кратных гармоник (кратных первой гармоники от 1 до 50 и более раз). Процесс имеет характер постоянного перераспределения энергии колебаний в одну и другую сторону - увеличения и уменьшения, что и создает колебания всех роторных амплитуд (кратных гармоник). Поскольку более высокие по кратности гармоники имеют не устойчивую амплитуду, диагностика выполняется по первым пяти гармоникам каждого ротора.

Еще одним фактором является изменение вектора (направления) вибрации в результате колебательных процессов роторов. Поскольку направление измерения датчика производится по одной оси (датчик измеряет вибрацию в одном направлении), то изменение вектора вибрации вызывает изменение амплитуды вибрации роторов и их кратных гармоник, по причине изменения направления вибрации относительно направления измерения датчика.

Совместное влияние этих двух факторов и вызывает реакцию амплитуд при дефекте подшипника.

Значение амплитуд гармоник при исправной работе ГТД практически не изменяется. Изменения носят неповторяющейся или практически неповторяющийся характер, который имеет при возможном повторении большой период. Для отстройки метода от ошибок, связанных с ложным срабатыванием, и был разработан алгоритм, отслеживающий изменение амплитуд, частот и периодов колебаний.

Применение предлагаемого изобретение позволяет эффективно и своевременно осуществлять диагностику технического состояния двигателя, что снижает финансовые и трудозатраты на его ремонт и обслуживание, а также обеспечивает надежность его эксплуатации.

Способ диагностики технического состояния подшипниковых опор газотурбинного двигателя, включающий установку датчиков вибрации в диагностируемом сечении на корпусе двигателя, измерение вибрационных сигналов работающего двигателя с последующим преобразованием их в амплитудно-частотный спектр, выделение в этом спектре частот вращения ротора низкого давления и ротора высокого давления, анализ полученного спектра частот с последующим определением технического состояния подшипниковых опор, отличающийся тем, что диагностику работающего двигателя производят в диапазоне частот роторов высокого и низкого давления от 45 до 1000 Гц в течение отрезка времени не менее 2 минут, дополнительно определяют максимальные и минимальные значения амплитуд гармоник роторов, разница между которыми должна составлять не менее 20%, при этом при наличии не менее 5 колебаний амплитуд гармоник роторов, частота колебаний которых не более 1 раза в 15 секунд и равным периодом между ними, останавливают эксплуатацию двигателя.
Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот
Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот
Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот
Способ вибрационной диагностики подшипниковых опор в составе газотурбинных двигателей по изменению размаха амплитуды роторных частот
Источник поступления информации: Роспатент

Показаны записи 71-80 из 136.
10.02.2016
№216.014.c50f

Упругая опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции упругих опор роторов турбомашин. Упругая опора ротора турбомашины содержит установленный на валу радиальный подшипник, наружное кольцо которого соединено с корпусом, в котором выполнены прорези с образованием между ними...
Тип: Изобретение
Номер охранного документа: 0002574945
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c593

Способ регулирования работы авиационного газотурбинного двигателя

Изобретение относится к способам регулирования режимами работы двигателя при его эксплуатации на летательном аппарате по приборной скорости полета в зависимости от предельной осевой нагрузки, действующей на упорный подшипник ротора авиационного газотурбинного двигателя. Назначают предельную...
Тип: Изобретение
Номер охранного документа: 0002578931
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c616

Подшипник скольжения с наноструктурным функционально-градиентным антифрикционным покрытием

Изобретение относится к подшипникам скольжения и может быть использовано в ракетно-космической, авиационной, нефтегазодобывающей и перерабатывающей промышленности, в железнодорожном, автомобильном транспорте и других областях промышленности. Подшипник скольжения, включающий корпус,...
Тип: Изобретение
Номер охранного документа: 0002578840
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c656

Центробежно-шестеренный маслонасос

Изобретение относится к области машиностроения и касается устройства центробежно-шестеренных маслонасосов, применяемых в маслосистемах авиационных газотурбинных двигателей. Центробежно-шестеренный маслонасос содержит корпус, расположенные в расточках корпуса шестерни с каналами подвода масла,...
Тип: Изобретение
Номер охранного документа: 0002578762
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6c9

Радиально-торцевое уплотнение ротора турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом, достигаемым при использовании настоящего изобретения, является повышение его срока службы и расширение области...
Тип: Изобретение
Номер охранного документа: 0002578939
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c764

Радиально-торцевое уплотнение ротора турбомашины

Изобретение относится к области машиностроения и может быть использовано в конструкциях турбомашин для уплотнения кольцевых щелей между статором и ротором. Радиально-торцевое уплотнение ротора турбомашины содержит установленный в корпусе кольцевой элемент, в котором выполнены пазы с...
Тип: Изобретение
Номер охранного документа: 0002578933
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8a3

Упругая опора с регулируемой жесткостью для стендовых динамических испытаний роторов турбомашин

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин. Техническим результатом, достигаемым при использовании заявленной конструкции, является повышение...
Тип: Изобретение
Номер охранного документа: 0002578935
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8a5

Баростатический клапан двойного действия

Изобретение относится к элементам систем газотурбинных двигателей (ГТД) и может быть использовано в маслосистемах теплонапряженных авиационных ГТД для регулирования давления сжатого воздуха и горячих газов в системе суфлирования. Баростатический клапан двойного действия для системы суфлирования...
Тип: Изобретение
Номер охранного документа: 0002578766
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8d2

Секционный воздухо-воздушный теплообменник системы охлаждения турбины турбомашины

Изобретение относится к области авиадвигателестроения, а именно к системам охлаждения турбин газотурбинного двигателя. Воздухо-воздушный теплообменник, содержащий несколько охлаждаемых секций, установленных в проточной части турбомашины и закрепленных на корпусе посредством болтовых соединений,...
Тип: Изобретение
Номер охранного документа: 0002578940
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8da

Опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции межвальных опор роторов турбомашин. Опора ротора турбомашины содержит роликовый подшипник и посадочное кольцо под внутреннее кольцо роликового подшипника. Наружное кольцо роликового подшипника установлено в валу...
Тип: Изобретение
Номер охранного документа: 0002578926
Дата охранного документа: 27.03.2016
Показаны записи 71-80 из 142.
10.02.2016
№216.014.c50f

Упругая опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции упругих опор роторов турбомашин. Упругая опора ротора турбомашины содержит установленный на валу радиальный подшипник, наружное кольцо которого соединено с корпусом, в котором выполнены прорези с образованием между ними...
Тип: Изобретение
Номер охранного документа: 0002574945
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c593

Способ регулирования работы авиационного газотурбинного двигателя

Изобретение относится к способам регулирования режимами работы двигателя при его эксплуатации на летательном аппарате по приборной скорости полета в зависимости от предельной осевой нагрузки, действующей на упорный подшипник ротора авиационного газотурбинного двигателя. Назначают предельную...
Тип: Изобретение
Номер охранного документа: 0002578931
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c616

Подшипник скольжения с наноструктурным функционально-градиентным антифрикционным покрытием

Изобретение относится к подшипникам скольжения и может быть использовано в ракетно-космической, авиационной, нефтегазодобывающей и перерабатывающей промышленности, в железнодорожном, автомобильном транспорте и других областях промышленности. Подшипник скольжения, включающий корпус,...
Тип: Изобретение
Номер охранного документа: 0002578840
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c656

Центробежно-шестеренный маслонасос

Изобретение относится к области машиностроения и касается устройства центробежно-шестеренных маслонасосов, применяемых в маслосистемах авиационных газотурбинных двигателей. Центробежно-шестеренный маслонасос содержит корпус, расположенные в расточках корпуса шестерни с каналами подвода масла,...
Тип: Изобретение
Номер охранного документа: 0002578762
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6c9

Радиально-торцевое уплотнение ротора турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом, достигаемым при использовании настоящего изобретения, является повышение его срока службы и расширение области...
Тип: Изобретение
Номер охранного документа: 0002578939
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c764

Радиально-торцевое уплотнение ротора турбомашины

Изобретение относится к области машиностроения и может быть использовано в конструкциях турбомашин для уплотнения кольцевых щелей между статором и ротором. Радиально-торцевое уплотнение ротора турбомашины содержит установленный в корпусе кольцевой элемент, в котором выполнены пазы с...
Тип: Изобретение
Номер охранного документа: 0002578933
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8a3

Упругая опора с регулируемой жесткостью для стендовых динамических испытаний роторов турбомашин

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин. Техническим результатом, достигаемым при использовании заявленной конструкции, является повышение...
Тип: Изобретение
Номер охранного документа: 0002578935
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8a5

Баростатический клапан двойного действия

Изобретение относится к элементам систем газотурбинных двигателей (ГТД) и может быть использовано в маслосистемах теплонапряженных авиационных ГТД для регулирования давления сжатого воздуха и горячих газов в системе суфлирования. Баростатический клапан двойного действия для системы суфлирования...
Тип: Изобретение
Номер охранного документа: 0002578766
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8d2

Секционный воздухо-воздушный теплообменник системы охлаждения турбины турбомашины

Изобретение относится к области авиадвигателестроения, а именно к системам охлаждения турбин газотурбинного двигателя. Воздухо-воздушный теплообменник, содержащий несколько охлаждаемых секций, установленных в проточной части турбомашины и закрепленных на корпусе посредством болтовых соединений,...
Тип: Изобретение
Номер охранного документа: 0002578940
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8da

Опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции межвальных опор роторов турбомашин. Опора ротора турбомашины содержит роликовый подшипник и посадочное кольцо под внутреннее кольцо роликового подшипника. Наружное кольцо роликового подшипника установлено в валу...
Тип: Изобретение
Номер охранного документа: 0002578926
Дата охранного документа: 27.03.2016
+ добавить свой РИД