×
25.08.2017
217.015.b775

Результат интеллектуальной деятельности: КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях каждого из каналов, минимально удаленных от продольной оси оболочки, согласно изобретению каналы охлаждающего тракта, размещенные в толщине внутренней оболочки, сформированной по аддитивной технологии методом селективного лазерного сплавления, выполнены закрытыми, и дополнительно на поверхностях каждого из каналов, максимально удаленных от продольной оси оболочки, также выполнены турбулизирующие выступающие элементы в форме треугольника, большая из сторон которого обращена к входу канала, а меньшая - к выходу канала. Изобретение обеспечивает повышение эффективности охлаждающего тракта камеры сгорания ЖРД, а также снижение длительности и стоимости изготовления внутренней оболочки камеры сгорания. 6 ил.

Изобретение относится к ракетной технике и может быть использовано в жидкостных ракетных двигателях, содержащих камеры сгорания.

В практике конструирования камер сгорания (КС) жидкостных ракетных двигателях (ЖРД), созданных ОКБ-1, ЦКБЭМ-НПО «Энергия» / Под ред. Соколова Б.А. // Ракетно-космическая техника. Труды. Сер. ХII. Королев: РКК «Энергия», 2009. Вып. 1-2. 188 с, самой распространенной и общепринятой является конструкция, состоящая из внутренней медной и наружной стальной оболочек, соединенных между собой через пайку, при этом на медной оболочке методом фрезерования выполняется открытая оребрениая винтовая нарезка каналов тракта охлаждения, которая только после ее закрытия наружной оболочкой образует винтовые закрытые каналы охлаждающего тракта.

Известна также конструкции камеры сгорания ЖРД (см. Особенности построения, экспериментальной отработки и эксплуатации двигательной установки разгонного блока ДМ-SL комплекса «Морской старт» и пути ее дальнейшего совершенствования / Аверин И.Н., Егоров Л.М., Тупицын Н.Н. // Космическая техника и технологии. №2(5). 2014 г.), принятая за прототип и содержащая наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях каждого из каналов, минимально удаленных от продольной оси оболочки. Внутренняя и внешняя оболочки КС соединены между собой посредством пайки.

На фиг. 1 показан общий вид прототипа камеры сгорания, где:

1 - внутренняя оболочка камеры сгорания,

2 - наружняя оболочка камеры сгорания,

3 - конусная часть внутренней оболочки камеры сгорания,

4 - конусная часть наружной оболочки камеры сгорания,

5 - накладки (два полукольца).

Как видно из чертежа, внутренняя оболочка камеры сгорания состоит из двух частей входной части и конусной части, обе изготавливаются из жаропрочного медного сплава. Деление внутренней оболочки на две части обусловлено традиционной технологией изготовления, а именно ограничениями по допустимой степени деформации при технологической операции развальцовки (раскрытия) закритического участка входной части внутренней оболочки камеры сгорания.

Сначала изготавливаются отдельно наружная и внутренняя оболочки КС входной и конусной частей, всего 4 отдельных детали. При этом на входной и конусной частях внутренней оболочки КС методом фрезерования вырезаются открытые винтовые каналы охлаждающего тракта. Во входной части внутренней оболочки на дне каждого канала методом электроэрозионной обработки, или методом «накатки» формируются конструктивные турбулизирующие выступающие элементы. А внутренняя поверхность наружных оболочек обязана оставаться абсолютно гладкой для осуществления последующей пайки через контакт с вершинами винтовых ребер, нарезанных на наружных поверхностях внутренних оболочек. Затем входная часть внутренней оболочки из медного сплава вставляется в наружную стальную часть и производится развальцовка закритического участка внутренней оболочки, после этого они соединяются пайкой. Конусная часть внутренней оболочки из медного сплава вставляется в конусную часть наружной оболочки из стали, после этого они также соединяются между собой пайкой. Полученные входная и конусная части КС соединяются между собой сваркой. После этого между входной и конусной частями по местам соприкосновения со стальными наружными оболочками привариваются стальные накладки, которые окончательно закрывают винтовые каналы охлаждающего тракта КС.

Таким образом, для такой конструкции общее количество деталей составляет 6 штук, количество сварных швов равно 4-м, количество паяных швов равно 2-м, а количество испытаний на прочность и герметичность равно 3-м. Как следствие, трудоемкость и продолжительность изготовления такой конструкции весьма большие.

Следует отметить также и следующие недостатки данной конструкции:

Первое - совершенно отсутствует возможность выполнения конструктивных турбулизирующих выступающих элементов одновременно на поверхностях открытых каналов внутренних оболочек и на внутренней поверхности наружных оболочек, которые (поверхности) в последующем образуют максимально удаленные от продольной оси КС поверхности каждого из винтовых каналов охлаждающего тракта.

Второе - на самом теплонапряженном участке в районе критического сечения камеры сгорания такие геометрические параметры оребрения охлаждающего тракта, как угол наклона ребер (соответственно каналов), ширина винтовых каналов и толщина винтовых ребер, а также их количество имеют существенные ограничения по своим возможным значениям из-за того, что при фрезеровании винтовых каналов необходимо исключать возможность подреза выходящей частью дисковой фрезы боковой поверхности ребер, что приводит к их недопустимому утонению, и, как следствие, к невозможности получения прочного паяного соединения оболочек между собой.

Третье - очень длительный и, как следствие, очень дорогостоящий цикл нанесения турбулизизирующих выступающих элементов 9, минимально удаленных от продольной оси оболочки КС на поверхность винтовых каналов охлаждающего тракта методом электроэрозионной обработки, который применяется на внутренних оболочках камер сгорания, не имеющих больших толщин огневой стенки.

Как известно, чем лучше охлаждается камера сгорания, тем большую надежность и ресурс работы имеет ЖРД. В современных ЖРД с так называемой регенеративной схемой охлаждения камеры сгорания в качестве охладителя выступает один из компонентов топлива, как правило - горючее, как это выполнено, например, в камере-аналоге. Однако из-за того, что секундный массовый расход второго компонента топлива - окислителя всегда больше, чем расход горючего, то по расчетным оценкам целесообразно именно его использовать в качестве охладителя, особенно, если в качестве охладителя применяется жидкий кислород с криогенной температурой, как это выполнено, например, в камере-прототипе.

Однако подаваемый в охлаждающий тракт камеры сгорания жидкий кислород в процессе своего нагрева частично или полностью переходит из жидкого в газообразное состояние, при этом происходит изменение его охлаждающих свойств. Анализ испытаний экспериментальных камер сгорания показывает наличие особенностей течения криогенного кислорода в тракте охлаждения камеры сгорания. Из-за центробежных сил, вызываемых кривизной каналов тракта охлаждения камеры, течение криогенного кислорода в каналах тракта сопровождается его температурным расслоением по высоте канала. Причем в самом теплонапряженном месте центробежные силы начинают прижимать к огневой стенке наиболее нагретые и, соответственно, наименее плотные слои кислорода, и так, как скорость течения всех слоев кислорода примерно одинакова, то это помимо снижения температурного перепада между стенкой и кислородом ведет к снижению массовой скорости у стенки и, соответственно, снижению коэффициента теплоотдачи. Наличие такого слоистого течения подтверждается дефектацией экспериментальных камер прототипа в виде наличия четких следов перегрева у основания ребер и его пропаданием ближе к их вершинам.

Газообразный кислород в первую очередь образуется непосредственно вблизи поверхности каждого из винтовых каналов охлаждающего тракта, расположенной ближе остальных к продольной оси КС, так как она самая горячая. Из-за действия возникающих при движении охладителя с высокими скоростями по винтовым каналам центробежных сил значительно более тяжелая жидкая фаза кислорода отжимается ближе к той поверхности канала, которая расположена дальше, чем остальные от продольной оси КС.

Поэтому для задачи интенсификации перемешивания жидкой и газообразной фаз кислорода в винтовом канале тракта охлаждения очень большое значение имеет дополнительное выполнение на дальней от продольной оси КС стенке канала регулярно расположенных турбулизирующих выступающих элементов, отбрасывающих жидкую фазу кислорода к противоположной - самой горячей поверхности канала.

В общепринятых и традиционных конструктивных схемах камер сгорания, включая камеры сгорания как аналога, так и прототипа, такая задача в силу конструкции и технологических особенностей их изготовления является невыполнимой.

Техническим результатом изобретения является значительное повышение эффективности охлаждающего тракта камеры сгорания ЖРД, а также значительное снижение длительности и стоимости изготовления самой ответственной и нагруженной детали двигателя - внутренней оболочки камеры сгорания.

Данный технический результат достигается тем, что в камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях каждого из каналов, минимально удаленных от продольной оси оболочки, в отличие от известной, в ней каналы охлаждающего тракта, размещенные в толщине внутренней оболочки, сформированной по аддитивной технологии методом селективного лазерного сплавления, выполнены закрытыми, и дополнительно на поверхностях каждого из каналов, максимально удаленных от продольной оси оболочки, также выполнены турбулизирующие выступающие элементы в форме треугольника, большая из сторон которого обращена к входу канала, а меньшая - к выходу канала.

Необходимо отметить, что в последнее время наметилась тенденция к выполнению сложных охлаждающих трактов с переменными по длине оболочки значениями высоты, толщины и угла наклона ребер охлаждающего тракта, а также ширины винтовых каналов для обеспечения наиболее эффективных параметров охлаждения при минимальных потерях давления в тракте охлаждения.

Суть изобретения поясняется чертежами, на которых приведены:

На фиг. 1 - общий вид прототипа камеры сгорания;

На фиг. 2 - поперечное сечение КС прототипа;

На фиг. 3 - расположение конструктивных турбулизирующих выступающих элементов на поверхностях канала охлаждающего тракта относительно продольной оси заявляемой камеры сгорания;

На фиг. 4 - общий вид внутренней оболочки заявляемой КС;

На фиг. 5 - общий вид заявляемой камеры сгорания ЖРД;

На фиг. 6 поперечное сечение заявляемой КС.

При этом приняты следующие обозначения:

1- внутренняя оболочка КС;

2 - наружная оболочка КС;

6 - турбулизирующие выступающие элементы треугольной формы на поверхностях каналов, максимально удаленных от продольной оси оболочки;

7 - продольная ось КС;

8 - канал тракта охлаждения;

9 - турбулизирующие выступающие элементы на поверхностях каналов, минимально удаленных от продольной оси оболочки.

Из фиг. 5 видно, что входная и конусная части как для внутренней, так и для наружной оболочек представляют из себя одну деталь, при этом наружная оболочка наносится на внутреннюю оболочку КС также по аддитивной технологии методом лазерной наплавки.

На фиг. 3 показано расположение конструктивных турбулизирующих выступающих элементов на поверхностях канала охлаждающего тракта относительно продольной оси заявляемой камеры сгорания.

На фиг. 4 показан общий вид внутренней оболочки заявляемой КС, выполненной по аддитивной технологии методом селективного лазерного сплавления из порошка медного жаропрочного сплава в виде единой детали. Как видно из фиг.4, расположенные в толщине стенки внутренней оболочки каналы тракта охлаждения сразу выполняются закрытыми 8. Таким образом, показанная на фиг. 5 и фиг. 4 конструкция камеры сгорания имеет общее количество деталей, равное 2, сварные и паяные швы отсутствуют вовсе, количество испытаний на прочность и герметичность снижено до одного. Как следствие длительность и трудоемкость изготовления такой конструкции по сравнению с прототипом снижается на порядок.

На фиг. 6 и фиг. 2 для пояснения понятия закрытые каналы показаны чертежи поперечного сечения заявляемой КС и прототипа КС соответственно.

Турбулизирующие выступающие элементы 6 регулярно расположенные на дальней от продольной оси 7 КС поверхности канала и выполненные в форме треугольника, одна из сторон которого лежит в плоскости, совмещенной с поверхностью канала, наиболее длинная сторона треугольника обращена к входу канала, а меньшая - к выходу, выполняют функцию трамплинов, направленных по потоку, что приводит к отбрасыванию более холодной жидкой фазы кислорода к противоположной - самой горячей поверхности канала 8, на которой расположены турбулизирующие выступающие элементы 9, где и происходит процесс основной передачи теплового потока от продуктов сгорания к протекающему по тракту охлаждения охладителю. Часть нагревшегося в результате теплопередачи кислорода может перейти в газовую фазу, которая в силу того, что обладает значительно меньшей плотностью, будет оттесняться значительно более тяжелой жидкой фазой к самой горячей поверхности канала 8. При этом охлаждающие способности потока кислорода, находящегося в газовой фазе, существенно хуже охлаждающих способностей потока кислорода, находящегося в жидкой фазе. Такое неэффективное с точки зрения интенсификации теплообмена распределение фаз с разными охлаждающими способностями по высоте канала объясняется воздействующими на поток центробежными силами. В предлагаемой конструкции камеры сгорания процессу размещения более холодной и соответственно более тяжелой жидкой фазы охладителя, имеющей максимальные охлаждающие свойства, вблизи дальней от продольной оси камеры сгорания поверхности канала противостоит процесс се отбрасывания расположенными на этой поверхности турбулизирующими выступающими элементами треугольной формы к противоположной самой горячей поверхности канала. То есть выполненные на дальней поверхности канала турбулизирующие выступающие элементы треугольной формы 6 обеспечивают возвращение жидкой фазы кислорода, обладающей максимальными охлаждающими свойствами, в непосредственную зону контакта с самой горячей поверхностью каналов тракта охлаждения. Оба этих фактора - и наличие центробежных сил, и наличие эффекта отбрасывания жидкой фазы охладителя назад к горячей поверхности канала действуют постоянно и одновременно. При этом возвращенная в зону контакта с самой горячей поверхностью канала жидкая фаза охладителя обеспечивает снятие максимально возможного количества тепла, идущего от продуктов сгорания через огневую стенку к охладителю. В силу вышесказанного конструкция камеры сгорания с выполненными турбулизирующими выступающими элементами одновременно на двух противоположных поверхностях каналов как максимально, так и минимально удаленных от продольной оси внутренней оболочки с закрытыми каналами, обладает повышенными свойствами охлаждения внутренней оболочки камеры сгорания.

Таким образом, использование предлагаемой конструкции камеры сгорания ЖРД позволит существенно повысить надежность охлаждения камеры сгорания и ресурс работы всего двигателя, а также сократить цикл и стоимость его изготовления.

Камера сгорания жидкостного ракетного двигателя, содержащая наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях каждого из каналов, минимально удаленных от продольной оси оболочки, отличающаяся тем, что в ней каналы охлаждающего тракта, размещенные в толщине внутренней оболочки, сформированной по аддитивной технологии методом селективного лазерного сплавления, выполнены закрытыми, и дополнительно на поверхностях каждого из каналов, максимально удаленных от продольной оси оболочки, также выполнены турбулизирующие выступающие элементы в форме треугольника, большая из сторон которого обращена к входу канала, а меньшая - к выходу канала.
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
КАМЕРА СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 271-280 из 378.
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
Показаны записи 271-280 из 310.
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
+ добавить свой РИД