×
25.08.2017
217.015.b6cd

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ДЕТАЛЕЙ ТОПЛИВНЫХ КОЛЛЕКТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ОТ НАГАРА И УГЛЕРОДНЫХ ЗАГРЯЗНЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений. Выдержку деталей осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от 0,5 до 2 г/л нитрата натрия или от 0,2 до 0,5 г/л сульфата натрия, после выдержки в водном растворе щелочи проводят очистку деталей топливного коллектора в растворе ортофосфорной кислоты с концентрацией от 50 до 150 г/л при температуре от 80 до 105°C, причем выдержку в водном растворе щелочи, очистку деталей топливного коллектора в растворе ортофосфорной кислоты, промывку в воде и продувку сжатым воздухом проводят по меньшей мере два раза. Технический результат - повышение эффективности и снижение длительности очистки деталей топливного коллектора газотурбинного двигателя, а также снижение энергозатрат. 3 ил.

Изобретение относится к области очистки изделий от нагара и углеродных загрязнений, в частности очистки топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, энергетическом машиностроении, судостроении и других отраслях промышленности.

Сокращение времени, затраченного на промывку, разборку, дефектацию двигателя, а также промывку и очистку его узлов и деталей, вместе с повышением качества очищенных поверхностей деталей, является важной технико-экономической задачей. Актуальность разработки эффективной технологии очистки деталей газотурбинных двигателей от нагара и углеродных загрязнений обусловлена необходимостью интенсификации использования двигателей при сокращении удельных расходов на обслуживание и увеличении их ресурса работы.

Известен способ ремонта топливного коллектора газотурбинного двигателя, который заключается в том, что топливный коллектор устанавливают в печь, а очистку осуществляют путем нагрева печи до температуры возгорания коксовых отложений и подачи после нагрева печи до указанной температуры сжатого воздуха во внутреннюю полость топливного коллектора в течение 5-20 мин при давлении 2 кг/см2, после прекращения подачи сжатого воздуха топливный коллектор выдерживают в печи, затем топливный коллектор вынимают из печи и проводят контроль его внутренней полости (RU 2255285 C1, 27.06.2005).

Для осуществления данного способа требуется наличие термического участка, существует вероятность загрязнения окружающей среды продуктами горения в процессе удаления загрязнений, при этом качество очищаемой поверхности недостаточно для проведения ремонта методом пайки.

Также известен способ очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива. Очистка осуществляется путем последовательной промывки коллектора нагретыми до 80-95°C органическим и двумя неорганическими растворителями (при многократной прокачке в прямом и обратном направлениях) с предварительной продувкой коллектора озонсодержащей смесью для перевода коксовых и асфальтеновых соединений, присутствующих в отложениях, в соединения с более низкой молекулярной массой, обладающие повышенной растворимостью. Завершается процесс промывкой горячей водой, нагретой до температуры 80-90°C, и высушиванием воздухом, нагретым до 100°C (RU 2224126 C1, 20.02.2004).

Недостатки данного способа заключаются в том, что при многократном проведении циклов очистки наблюдается коррозия металла очищаемых поверхностей, применяемые реагенты и оборудование имеют высокую стоимость, причем реагенты являются токсичными.

Наиболее близким аналогом является способ очистки от коксовых отложений и нагара топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, который включает выдержку в кипящем растворе при температуре от 120 до 165°C. Раствор содержит щелочь КОН или NaOH или их смесь с концентрацией щелочи в растворе от 600 до 800 г/л. Также он может содержать окислители, например азотнокислые соли щелочных металлов. Промывка в воде и продувка может производиться периодически (RU 2325606 C2, 27.05.2008).

Общая длительность процесса очистки, включая выдержку и остальные стадии, может доходить до 16 часов, в связи с чем данный способ недостаточно эффективен. Также способ не позволяет удалить плотные коксовые отложения в труднодоступных местах во внутренних канавках форсунок коллектора.

Технический результат заявляемого способа заключается в повышении эффективности и снижении длительности очистки деталей топливного коллектора газотурбинного двигателя, а также в снижении энергозатрат.

Указанный технический результат достигается за счет предложенного способа очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений, включающего выдержку деталей топливного коллектора в водном растворе щелочи, их промывку в воде и продувку сжатым воздухом, при этом выдержку осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от 0,5 до 2 г/л нитрата натрия или от 0,2 до 0,5 г/л сульфата натрия, после выдержки в водном растворе щелочи проводят очистку деталей топливного коллектора в растворе ортофосфорной кислоты с концентрацией от 50 до 150 г/л при температуре от 80 до 105°C, причем выдержку в водном растворе щелочи, очистку деталей топливного коллектора в растворе ортофосфорной кислоты, промывку в воде и продувку сжатым воздухом проводят по меньшей мере два раза.

В зависимости от размеров и формы топливного коллектора газотурбинного двигателя его детали можно очищать в собранном, в разобранном или же частично собранном виде.

Зависимость степени и времени очистки деталей коллектора от параметров процесса проиллюстрирована на графиках.

На фиг. 1 приведена зависимость степени очистки поверхности деталей коллектора от времени их выдержки и концентрации NaNO3 в водном щелочно-солевом растворе при 150°C и концентрации гидроксида натрия 750 г/л.

Кривая 1 соответствует концентрации NaNO3 - 0,5 г/л, кривая 2 - 1 г/л, кривая 3 - 2 г/л.

На фиг. 2 приведена зависимость степени очистки поверхности деталей коллектора от времени их выдержки и температуры водного щелочно-солевого раствора при концентрации NaNO3 - 1 г/л и гидроксида натрия 750 г/л.

Кривая 4 соответствует температуре выдержки в водном растворе гидроксида натрия и нитрата натрия - 100°C, кривая 5 - 120°C, кривая 6 - 150°C.

На фиг. 3 приведена зависимость степени очистки поверхности деталей коллектора от времени их выдержки и концентрации NaOH в водном щелочном растворе при температуре раствора 120°C и концентрации NaNO3 1,5 г/л.

Кривая 7 соответствует концентрации гидроксида натрия 600 г/л, кривая 8 - 700 г/л, кривая 9 - 800 г/л.

Предлагаемый способ очистки сохраняет в целостности паяные соединения элементов конструкции форсунки ГТД за счет снижения времени воздействия щелочной среды, а также снижения температуры процесса очистки.

Гидроксид натрия (NaOH) и нитрат натрия (NaNO3) были выбраны в качестве компонентов раствора для выдержки деталей коллектора с той целью, что данные вещества и продукты их взаимодействия с загрязнениями образуют растворимые в воде и легко удаляемые соединения и не образуют собственных отложений на деталях коллектора.

Механизм химического взаимодействия щелочи состоит в омылении сложных эфиров, содержащихся в составе продуктов нагара. Роль NaNO3 заключается в разложении плотных коксовых отложений на внутренних стенках каналов форсунок коллектора по схеме:

C+4NaNO3+2NaOH→Na2CO3+4NaNO2+H2O

Применение NaNO3 для разложения коксовых отложений значительно ускоряет процесс очистки деталей коллектора. Так, на фиг. 1 и 2 показано, что процесс очистки коллектора средней степени загрязненности предложенным способом может быть осуществлен за 2-3 стадии с выдержкой в щелочном растворе 30-60 минут. Таким образом, общее время очистки может составлять 2-4 часа - в отличие от способа-прототипа, предусматривающего только выдержку в щелочном растворе в течение 2-10 часов.

Концентрация щелочи и нитрата натрия или сульфата натрия в указанном диапазоне позволяет полностью удалить нагар и углеродные загрязнения, а также поддерживать температуру в пределах указанного диапазона, в том числе из-за выделяющегося в процессе реакции тепла, в течение всей операции очистки. Следовательно, предложенный способ позволяет снизить энергозатраты на подогрев раствора.

При температуре ниже 100°C и концентрациях в растворе щелочи ниже 600 г/л и азотнокислой соли ниже 0,5 г/л невозможно получить полную очистку внутренних полостей коллектора от углеродных загрязнений, в том числе от коксовых отложений, в труднодоступных местах из-за малой активности протекающей реакции омыления.

При высоких температурах процесса и концентрациях щелочи более 800 г/л и соли более 2 г/л могут возникнуть технологические сложности во время остывания ванны с раствором для очистки деталей коллектора, связанные с кристаллизацией гидроксида натрия.

После выдержки детали коллектора в водном щелочно-солевом растворе деталь перемещают в водный раствор ортофосфорной кислоты с концентрацией от 50 до 150 г/л, нагретый до температуры от 80 до 105°C. В процессе взаимодействия остатков щелочно-солевого раствора в полостях коллектора с раствором ортофосфорной кислоты происходит интенсивное отслаивание загрязнений.

При температуре ниже 80°C и концентрации раствора ортофосфорной кислоты ниже 50 г/л не происходит бурного вскипания остатков щелочи в каналах коллектора, что не приводит к отслоению загрязнений.

Обработка деталей коллектора при температуре выше 105°C и концентрации раствора ортофосфорной кислоты выше 150 г/л может привести к растравливанию их поверхности. Таким образом, режимы выдержки в щелочном растворе и очистки в кислотном растворе, а также указанные концентрации данных растворов, обеспечивают повышение эффективности и снижение длительности очистки деталей.

Далее проводят промывку водой для удаления остатков загрязнений. Операция промывки водой нейтрализует остатки реагентов.

Для более эффективного удаления остатков загрязнений промывку желательно проводить горячей водой.

В конце процесса очистки проводится продувка коллектора сжатым воздухом, в процессе которой удаляются отслоившиеся фрагменты нагара и углеродных загрязнений из внутренних полостей трубок и форсунок топливного коллектора.

После очистки топливного коллектора осуществляют контроль форсунок с использованием известных технических средств. Можно определить по известным методикам показатель pH и степень загрязненности дистиллированной воды, пролитой через внутренние каналы форсунок и коллектора.

Повторное проведение всех описанных операций дополнительно повышает эффективность удаления загрязнений, а также снижает продолжительность процесса очистки за счет снижения необходимого времени выдержки в щелочном растворе.

Для реализации способа очистки необходимы две емкости для выдержки топливного коллектора в щелочно-солевом и кислом растворах соответствующего размера, оборудованные защищенными нагревательными элементами, также емкость аналогичного размера с трубопроводом для подачи и удаления воды без нагревательных элементов для осуществления операции промывки коллектора, источник сжатого воздуха с гибким армированным шлангом.

Примеры осуществления.

Пример 1.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 650 г/л NaOH и 1,5 г/л NaNO3. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 120°C. Коллектор выдержали в щелочном растворе в течение 30 мин, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты с концентрацией 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 100°C, и выдерживали коллектор в течение 5 мин. При перемещении коллектора в емкость с раствором кислоты началась бурная химическая реакция, в процессе которой углеродные загрязнения отделялись от поверхности коллектора.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли всего 2 раза.

Затем проводили 2 цикла очистки со следующими параметрами: выдержка в щелочном растворе в течение 2 ч, выдержка в растворе ортофосфорной кислоты в течение 5 минут, промывка, продувка.

Общее время очистки составило 6 часов.

Исследование очищенных поверхностей деталей коллектора методами оптической и растровой микроскопии показало отсутствие углеродных загрязнений, как на внешней поверхности, так и во внутренних каналах.

Пример 2.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 650 г/л NaOH и 0,5 г/л NaNO3. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 120°C. Коллектор выдержали в щелочном растворе в течение 1 ч, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 100°C, и выдерживали коллектор в течение 5 мин.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли всего 2 раза.

Затем проводили 2 цикла очистки со следующими параметрами: выдержка в щелочном растворе в течение 2 ч, выдержка в растворе ортофосфорной кислоты в течение 5 минут, промывка, продувка.

Общее время очистки составило 6 ч.

Пример 3.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 750 г/л NaOH и 2 г/л NaNO3. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 150°C. Коллектор выдержали в щелочном растворе в течение 30 мин, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 105°C, и выдерживали коллектор в течение 5 мин.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли всего 2 раза. Общее время очистки составило 1,5 ч.

Пример 4.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 800 г/л NaOH и 2 г/л NaNO3. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 100°C. Коллектор выдержали в щелочном растворе в течение 30 минут, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 100°C, и выдерживали коллектор в течение 5 мин.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли 2 раза.

Затем проводили два цикла очистки со следующими параметрами: выдержка в щелочном растворе в течение 2 ч, выдержка в растворе ортофосфорной кислоты в течение 5 мин, промывка, продувка.

Общее время очистки составило 6 ч.

Пример 5.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 650 г/л NaOH и 0,2 г/л NaSO4. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 120°C. Коллектор выдержали в щелочном растворе в течение 30 минут, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 100°C, и выдерживали коллектор в течение 5 мин.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли всего 2 раза.

Затем проводили один цикл очистки со следующими параметрами: выдержка в щелочном растворе в течение 2 ч, выдержка в растворе ортофосфорной кислоты в течение 5 минут, промывка, продувка.

Общее время очистки составило 4 ч.

Пример 6.

Топливный коллектор поместили в емкость, заполненную до уровня, при котором коллектор полностью покрывается водным раствором, содержащим 600 г/л NaOH и 0,5 г/л NaSO4. Емкость накрыли крышкой и подогрели с помощью нагревательных элементов до температуры 100°C. Коллектор выдержали в щелочном растворе в течение 30 мин, затем вынули и переместили в емкость с водным раствором ортофосфорной кислоты 100 г/л. Емкость с кислым раствором также заполнили до уровня, при котором коллектор полностью покрыт раствором, предварительно подогретым до 100°C, и выдерживали коллектор в течение 5 мин.

Концентрацию щелочи в растворе и температуру водного щелочно-солевого раствора контролировали при помощи ареометра и ртутного термометра соответственно. При снижении заданной температуры в емкость добавляли необходимое для повышения температуры количество щелочи, а при повышении температуры выше заданной (при увеличении выше установленной концентрации щелочи) в раствор добавляли необходимое количество воды.

Далее коллектор перенесли в емкость с водой для промывки, после чего его продули сжатым воздухом.

Описанный цикл очистки повторяли всего 2 раза.

Затем проводили три цикла очистки со следующими параметрами: выдержка в щелочном растворе в течение 2 ч, выдержка в растворе ортофосфорной кислоты в течение 5 мин, промывка, продувка.

Общее время очистки составило 8 часов.

Таким образом, как показали проведенные опыты, предложенный способ повышает эффективность и снижает длительность очистки деталей топливного коллектора газотурбинного двигателя.

Поскольку диапазон концентраций щелочи и нитрата натрия или сульфата натрия из-за выделяющегося в процессе реакции тепла обеспечивает поддержание температуры раствора в пределах указанного диапазона, предложенный способ также позволяет снизить энергозатраты на подогрев раствора.

Способ очистки деталей топливного коллектора газотурбинного двигателя от нагара и углеродных загрязнений, включающий выдержку деталей топливного коллектора в водном растворе щелочи, их промывку в воде и продувку сжатым воздухом, отличающийся тем, что выдержку осуществляют при температуре от 100 до 150°C в водном растворе щелочи, содержащем от 600 до 800 г/л гидроксида натрия и дополнительно содержащем от 0,5 до 2 г/л нитрата натрия или от 0,2 до 0,5 г/л сульфата натрия, после выдержки в водном растворе щелочи проводят очистку деталей топливного коллектора в растворе ортофосфорной кислоты с концентрацией от 50 до 150 г/л при температуре от 80 до 105°C, причем выдержку в водном растворе щелочи, очистку деталей топливного коллектора в растворе ортофосфорной кислоты, промывку в воде и продувку сжатым воздухом проводят по меньшей мере два раза.
СПОСОБ ОЧИСТКИ ДЕТАЛЕЙ ТОПЛИВНЫХ КОЛЛЕКТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ОТ НАГАРА И УГЛЕРОДНЫХ ЗАГРЯЗНЕНИЙ
СПОСОБ ОЧИСТКИ ДЕТАЛЕЙ ТОПЛИВНЫХ КОЛЛЕКТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ОТ НАГАРА И УГЛЕРОДНЫХ ЗАГРЯЗНЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 368.
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a94

Состав для покрытия по металлу

Изобретение относится к области полимерных композиций на эпоксидной основе. Предложен состав для защиты внутренней поверхности топливных баков-кессонов летательных аппаратов, изготовленных из алюминиевых сплавов, от коррозии при длительной эксплуатации в среде топлива и может также применяться...
Тип: Изобретение
Номер охранного документа: 0002260610
Дата охранного документа: 20.09.2005
09.05.2019
№219.017.4aa9

Способ получения элемента соплового аппарата турбины и соплового аппарата турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента соплового аппарата, состоящую из стартовой и лопаточной частей. Стартовую часть модели изготавливают в виде двух пластин в...
Тип: Изобретение
Номер охранного документа: 0002265496
Дата охранного документа: 10.12.2005
Показаны записи 301-310 из 344.
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
+ добавить свой РИД