×
25.08.2017
217.015.b592

Результат интеллектуальной деятельности: Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности к средству, обладающему противоопухолевой активностью, а также к способу получения средства и его применению. Способ получения средства включает взаимодействие арабиногалактанового сырья и диоксида селена или солей селенистой кислоты в растворителе с последующим осаждением в этиловый спирт, или ацетон, или другой смешивающийся с водой органический растворитель. Способ характеризуется тем, что процесс ведут при температуре 20-25°С, размер стабильных наночастиц селена составляет 0,5-250 нм, а в качестве арабиногалактанового сырья используют либо арабиногалактан-сырец, либо специально очищенный от фенольных примесей арабиногалактан, а в качестве растворителей воду, или диметилсульфоксид, или формамид. Осуществление изобретения позволяет получить стабильные водорастворимые нанокомпозиты, обладающие противоопухолевой активностью, в сухом виде. 3 н.п. ф-лы, 7 ил., 11 пр.

Изобретение относится к химико-фармацевтической промышленности, фармакологии, медицине и ветеринарии, в частности фармакологии и онкологии, и может быть использовано для торможения развития опухолей эпителиального происхождения (карцином), в частности карциномы Эрлиха, и касается получения нанокомпозитов элементного селена на основе полисахарида арабиногалактана, которые обладают противоопухолевой активностью.

Разработанные нанокомпозиты могут быть использованы в практической медицине и ветеринарии в качестве высокоэффективных противоопухолевых средств.

Известен способ получения нанокомпозита элементного селена на основе полисахаридов - средства, обладающего противоопухолевой активностью (US 20130029931 А1) [Patent US 2013029931 "Pleurotus tuber-regium polysaccharide functionalized nano-selenium hydrosol with anti-tumor activity and preparation method thereof.", кл. A61K 31/715; A61P 35/00, опубликовано 31.01.2013 г.], где в качестве стабилизирующей высокомолекулярной матрицы ультрадисперсных селенсодержащих систем используется полисахарид, полученный из грибов Pleurotus tuber-regium, который и сам обладает противоопухолевой активностью [Zhang М., Cheung Р.С., Zhang L./ "Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of Pleurotus tuber-regium (Fries) singer as a potential antitumor agent." J Agric Food Chem. 2001 Oct; 49(10): 5059-62].

Синтез селеновых нанокомпозитов из полисахаридов этих грибов осуществляют следующим образом.

При комнатной температуре и атмосферном давлении смешивают водные растворы витамина С и полисахаридов Pleurotus tuber-regium, затем при равномерном перемешивании по каплям добавляют водный раствор диоксида селена или селенита. Полученный в результате гидрозоль полисахаридов Pleurotus tuber-regium, функционализированных наноселеном, включает полисахариды Pleurotus tuber-regium в концентрации 10-1000 мг⋅л-1 (0.001-0.1%); витамин С в концентрации 0.02-20 ммоль⋅л-1 (0.00035-0.35%); наноселен в концентрации 0.005 ммоль⋅л-1 (0.0395%), либо полисахариды Pleurotus tuber-regium в концентрации 10-800 мг⋅л-1 (0.001-0.08%); витамин С в концентрации 0.01-2.00 ммоль⋅л-1 (0.000176-0.0352%); наноселен в концентрации 0.1 ммоль⋅л-1 (0.00079%).

Полученный продукт может сохраняться в виде золя в водном растворе при 2-10°С. Этот способ имеет ряд недостатков.

1. В качестве источника полисахарида - матрицы для стабилизации селеновых наночастиц - используется гриб Pleurotus tuber-regium, дикорастущий в тропических зонах Африки, Азии и Австралии, промышленное выращивание которого не налажено, что принципиально ограничивает промышленное изготовление селенового нанокомпозита.

2. Грибной полисахарид, используемый для получения селеновых нанокомпозитов, не стандартизован, его строение не установлено.

3. Отсутствие избирательного проникновения у получаемых селеновых наночастиц в ядро опухолевой клетки.

4. Необходимость хранения полученного препарата в виде растворенного в воде золя.

5. Нестойкость полученного нанокомпозита (нет результатов по долговременному хранению).

6. Необходимость хранения препарата в условиях холодильника.

7. Есть данные о размере и форме функционализированных наноселеном только частиц полисахарида, но нет данных о размерности частиц самого селена, их дисперсности и мономорфности.

Наиболее близким к предлагаемому способу является способ получения селенсодержащих нанокомпозитов на основе галактозосодержащих полисахаридов (включая арабиногалактан) с антиоксидантными свойствами и гепатопротекторным эффектом [заявка РФ на изобретение №2013159311], однако в данном случае ничего не известно о противоопухолевых свойствах как самих галактозосодержащих полисахаридов (включая арабиногалактан), так и получаемых из них нанокомпозитных субстанций с элементным селеном.

Этот способ имеет ряд недостатков, главными из которых являются необходимость введения в реакционную смесь дополнительных потенциально агрессивных и токсичных восстанавливающих или окисляющих реагентов (борогидрид натрия, гидразин-гидрат, перекись водорода), а также проведение процесса синтеза нанокомпозитов при повышенных температурах.

Задачей предлагаемого изобретения является создание новых препаратов, обладающих противоопухолевой активностью, включающих нанокомпозиты селена и арабиногалактана, на основе рационального синтеза (без нагревания и дополнительных потенциально агрессивных и токсичных восстанавливающих или окисляющих реагентов) нанокомпозитов элементного селена в арабиногалактановой матрице. И затем провести их исследование на предмет получения на их основе средства, обладающего противоопухолевой активностью.

Технический результат достигается тем, что такой рациональный синтез проводят либо на основе арабиногалактана-сырца, выделяемого промышленно из древесины лиственницы (без процедуры специальной очистки этот полисахарид конъюгирован с полифенолами, в частности, биофлавоноидами [Б.Г. Сухов и др. Известия академии наук. Серия химическая. 2014. №9. С. 2189-2194], обладающими выраженными восстанавливающими свойствами), либо селеносодержащие нанобиокомпозиты можно получить на основе специально очищенного арабиногалактана, но только в среде восстанавливающих растворителей (диметилсульфоксида, или формамида, или другого восстанавливающего растворителя), последние в этом случае выполняют роль восстановителя ионов селена, и во всех случаях реакция идет при комнатной температуре (20-25°С). Целевые нанокомпозиты элементного селена и арабиногалактана представляют собой наночастицы нуль-валентного селена с размером частиц 0.5-250 нм (в зависимости от условий получения, см. примеры ниже), стабилизированные нетоксичной полисахаридной матрицей - арабиногалактаном в виде стабильных порошков, и, как показано ниже, они обладают противоопухолевым действием с избирательным проникновением в ядро опухолевой клетки. По-видимому, мягкие условия образования нанобиокомпозитов селена сохранили структуру галактозосодержащей полисахаридной матрицы, что в результате привело к созданию ценных противоопухолевых препаратов.

Отличительной особенностью разработанных нанокомпозитов селена является их водорастворимость, биосовместимость, рецептор-опосредованные трансмембранные свойства по отношению к живой клетке, иммуномодулирующие свойства, пролонгированность биологического действия, что позволяет получать селеновые нанокомпозиты с высокой степенью биологической доступности, способные избирательно проникать в ядро опухолевой клетки (что проявляется в максимуме противоопухолевой эффективности при минимуме побочных действий) и обладающие возможностью длительного хранения в сухом порошкообразном виде.

Технический результат достигается также тем, что для образования при комнатной температуре нанокомпозитов, представляющих собой наночастицы элементного селена с размером 0.5-250 нм (в зависимости от условий получения), стабилизированных макромолекулами арабиногалактана, в качестве исходного селеносодержащего сырья берут диоксид селена - ангидрид селенистой кислоты, или водорастворимые соли этой кислоты (например, селенит натрия, или калия, или другой водорастворимой соли селенистой кислоты). Промышленно доступный арабиногалактан-сырец (представляет собой конъюгаты арабиногалактана и полифенолов, в частности биофлавоноидов, обладающих высокими электроно-восстанавливающими свойствами [Егорова Е.М., Ревина А.А. Журн. физ. химии. 2003. Т. 77. №9. С. 1683-1692]) реагирует с диоксидом селена или селенитами в водном растворе, а специально очищенный в мягких условиях на полиамидной колонке от полифенолов арабиногалактан - в растворе диметилсульфоксида (ДМСО), или формамида, или другого восстанавливающего растворителя, которые не только являются растворителями, но и восстанавливают молекулы диоксида селена или солей селенистой кислоты до элементарного селена.

Преимуществами заявляемых методов получения нанокомпозитов элементного селена и арабиногалактана от известных методов является отсутствие дополнительных, специально вводимых восстанавливающих реагентов (в случае арабиногалактана-сырца роль восстанавливающих реагентов выполняют уже находящиеся в макромолекулах арабиногалактана природные полифенолы, в частности флавоноиды, а в случае проведения синтеза на основе очищенного арабиногалактана в растворе восстанавливающих растворителей (диметилсульфоксид, или формамид, или другой способный к легкому окислению растворитель) последние выполняет одновременно функцию как растворителя всех реагентов, так и восстановителя прекурсоров селена до его нульвалентного состояния). Кроме того, в заявляемых методах синтеза нанокомпозитов элементного селена и арабиногалактана не требуется дополнительных затрат энергии - реакция осуществляется при комнатной температуре.

Техническим результатом настоящего изобретения является получение в сухом порошкообразном виде стабильных водорастворимых нанокомпозитов (содержащих в макромолекулах арабиногалактана наночастицы селена), которые обладают противоопухолевой активностью. На основе этих композитов готовится противоопухолевое средство, представляющее собой водные растворы этих нанокомпозитов, нормированные по содержанию селена (см. примеры ниже).

Синтез селенонанобиокомпозитов осуществляется следующим образом. Для получения стабильных наночастиц элементного селена к раствору товарного арабиногалактана-сырца в воде или чистого арабиногалактана в диметилсульфоксиде добавляли раствор диоксида селена (или водорастворимых солей селенистой кислоты) соответственно в воде или в диметилсульфоксиде. В случае использования водных растворов арабиногалактана-сырца и диоксида селена добавляли также водный раствор аммиака до нейтральной реакции. Реакцию в обоих случаях проводили при комнатной температуре (20-25°С). Образующуюся субстанцию арабиногалактана с инкапсулированными в его макромолекулы наночастицами селена осаждали этиловым спиртом, или ацетоном, или другим смешивающимся с водой органическим растворителем, промывали тем же растворителем, фильтровали и сушили.

Содержание селена в полученных образцах нанокомпозитов составляет 0.5-60.0% (в зависимости от исходного соотношения арабиногалактан/предшественник селена и от других условий синтеза - см. примеры). По данным электронной микроскопии, селен в наноразмерной форме, стабилизированной арабиногалактаном, имеет размеры частиц от 0.5 до 250 нм (в зависимости от способа получения - см. примеры).

Дифрактограммы композитов характеризуют ренгеноаморфное состояние как арабиногалактана, так и элементного селена.

По данным просвечивающей электронной микроскопии, полученные нанокомпозиты содержат наночастицы селена сферической или почти сферической формы.

Предлагаемый способ получения нанокомпозитов элементного селена и арабиногалактана характеризуется следующими преимуществами:

- арабиногалактан-сырец (конъюгат арабиногалактана с природными полифенолами, в частности флавоноидами), а также чистый арабиногалактан, используемые для синтеза нанокомпозитов селена, являются стандартизованными товарными продуктами;

- селенсодержащие нанокомпозиты получаются из доступного и дешевого сырья хорошо воспроизводимым в промышленности рациональным способом, их получение отличается простотой в техническом исполнении и экономичностью, так как не требует применения дополнительных специальных восстанавливающих реагентов, энергозатрат на нагревание и связанных с этим повышенных затрат рабочего времени;

- полученные нанокомпозиты элементного селена на основе арабиногалактана сохраняют структурную организацию и водорастворимость, удобны при хранении, выдерживают длительное хранение в сухом виде и способность к повторному растворению в воде после хранения;

- полученные нанокомпозиты элементного селена и арабиногалактана обладают противоопухолевой активностью, как показано на примере асцитной карциномы Эрлиха, при этом продолжительность жизни животных (белые мыши) увеличивалась на 47%, а торможение опухоли приведении вышеуказанных нанокомпозитов достигало 67,4%.

- полученные нанокомпозиты элементного селена и арабиногалактана способны к целевой доставке в ядро опухолевой клетки.

На рисунке 1 представлено типичное фото селеновых наночастиц в арабиногалактане, полученное с помощью просвечивающей электронной микроскопии.

На рисунке 2 представлена типичная ренгенодифрактограмма нанокомпозита элементный селен - арабиногалактан (фазы как арабиногалактана, так и селена рентгеноаморфны).

На рисунке 3А представлено отсутствие свечения клеток асцитной карциномы Эрлиха через 24 часа инкубации, эпифлюоресценции DIH-M с фильтром Nikon TRITC, ув. 400×.

На рисунке 3Б представлено яркое свечение ядер клеток асцитной карциномы Эрлиха после инкубации с нанокомпозитом элементного селена и арабиногалактана в дозе 7.5 мг/л в пересчете на Se через 24 часа инкубации, эпифлюоресценции DIH-M с фильтром Nikon TRITC, ув. 400×.

На рисунке 4А показаны клетки асцитной карциномы Эрлиха без признаков дегенеративных изменений, контрольная группа, окраска Hoechst 33342, эпифлюоресценции DIH-M с фильтром Nikon DAPI, ув. 400×.

На рисунке 4Б показаны клетки асцитной карциномы Эрлиха опытной группы №3 (доза селена 7.5 мг/кг), большое количество дегенеративных форм, окраска Hoechst 33342, эпифлюоресценции DIH-M с фильтром Nikon DAPI, ув. 400×.

На рисунке 5 представлена Таблица влияния нанокомпозита элементного селена и арабиногалактана на развитие асцитной карциномы Эрлиха. (Примечание к Таблице. Разница с контролем статистически значима: * - при Р<0.001; ** - при Р<0.01.)

Пример 1.

Арабиногалактан-сырец (0.85 г) растворяли в 3.5 мл воды и к нему приливали раствор SeO2 m≈0.008 г в 0.5 мл воды при постоянном перемешивании в течение 15 мин при комнатной температуре 20-25°С. После смешивания растворов реагентов видимых изменений не наблюдалось. Затем доводили рН раствора до 7.0, добавляя по каплям (≈60 мкл) 25% водный раствор аммиака. Реакционная смесь изменяла окраску с соломенно-желтой на розоватую. Контроль за величиной рН среды осуществляли с помощью иономера ЭВ-74. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита составил 91%, содержание селена в нанокомпозите - 0.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 0.5-3.2 нм (средний размер 1.2 нм) по данным просвечивающей электронной микроскопии.

Пример 2.

Навеску арабиногалактана-сырца (0.5 г) растворяли в 2.5 мл воды и к нему приливали раствор SeO2 m≈0.05 г в 0.5 мл воды при постоянном перемешивании в течение 30 мин при комнатной температуре 20-25°С. При смешивании растворов видимых изменений не наблюдалось. Затем доводили рН раствора до 7.0, добавляя по каплям 25% водный раствор аммиака (≈175 мкл). Реакционная смесь изменяла окраску с соломенно-желтой на ярко-красную. Контроль за величиной рН среды вели с помощью иономера ЭВ-74. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита составил 87%, содержание селена в нанокомпозите - 2.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 0.7-4.6 нм (средний размер 2.5 нм) по данным просвечивающей электронной микроскопии.

Пример 3.

Арабиногалактан-сырец (0.85 г) растворяли в 3.5 мл воды и к нему приливали раствор Na2SeO3 (можно использовать другие водорастворимые соли селенистой кислоты) (0.036 г) в 0.5 мл воды при постоянном перемешивании в течение 15 мин при комнатной температуре 20-25°С. Реакционная смесь изменяла окраску с соломенно-желтой на розоватую. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл ацетона с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита составил 90%, содержание селена в нанокомпозите -1,73%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 1.2-6.0 нм (средний размер 2.5 нм) по данным просвечивающей электронной микроскопии.

Пример 4.

Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 2 мл диметилсульфоксида, при перемешивании добавляли 0.1 г SeO2 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали 5 мл этанола, промыли 3 раза по 5 мл тем же спиртом от непрореагировавшего SeO2 и других продуктов реакции. Осадок фильтровали через стеклянный фильтр Шотта и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита в виде порошка бледно-оранжевого цвета составил 92.3%, содержание селена в нанокомпозите - 6.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 5.0-50.0 нм (средний размер 25 нм) по данным просвечивающей электронной микроскопии.

Пример 5.

Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 3 мл диметилсульфоксида, при перемешивании добавляли 0.2 г SeO2 при комнатной температуре 20-25°С. Через 3.5 часа образовавшийся продукт высадили в 10 мл ацетона, промыли 3 раза по 5 мл тем же растворителем от непрореагировавшего SeO2. Осадок фильтровали через стеклянный фильтр Шотта и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита в виде порошка бледно-оранжевого цвета составил 82.4% с содержанием селена 60%.

Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 7-60 нм (средний размер 6.5 нм) по данным просвечивающей электронной микроскопии.

Пример 6.

Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 2 мл диметилсульфоксида, при перемешивании добавляли 0.1 г K2SeO3 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали в 15 мл этанола. Промывали декантацией 4 раза по 5 мл этанола. Осадок фильтровали через стеклянный фильтр Шота и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита в виде порошка светло коричнего цвета составил 87.4% с содержанием селена 4%.

Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 5.0 - 250.0 нм (средний размер 70.0 нм) по данным просвечивающей электронной микроскопии.

Пример 7.

Чистый (без полифенолов) арабиногалактан (0.4 г) растворяли в 5 мл формамида, при перемешивании добавляли 0.2 г K2SeO3 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали в 20 мл этанола. Промывали декантацией 4 раза по 5 мл этанола. Осадок фильтровали через стеклянный фильтр Шота и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.

Выход полученного нанокомпозита в виде порошка бледно-коричневого цвета составил 90.0%, с содержанием селена 5%.

Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 10.0-55.0 нм (средний размер 25.0 нм) по данным просвечивающей электронной микроскопии.

Пример 8.

Синтезированные по примерам 1-7 нанокомпозиты хранили при комнатной температуре в укупоренной таре. Через год нанокомпозиты сохраняют 100% водорастворимость, при этом средний размер и степень дисперсности селеновых наночастиц сохраняют свои первоначальные значения в соответствии с примерами 1-7.

Пример 9.

Для приготовления средства с противоопухолевой активностью нанокомпозит растворяли в стерильной воде до получения раствора нанокомпозита 20% концентрации, затем полученный раствор нормировали по содержанию селена (см. примеры ниже).

Пример 10.

Культуру перепрививаемого штамма асцитной карциномы Эрлиха, приобретенную в питомнике Федерального государственного учреждения науки «Государственный научный центр вирусологии и биотехнологии «Вектор» (Россия, Новосибирская область, поселок Кольцово), ветеринарный сертификат 254 №0336050 от 28 июля 2010 г., инкубировали с раствором нанокомпозита элементного селена и арабиногалактан в стерильной воде в дозе 2.5 мг, 5 мг и 7.5 мг на литр (в пересчете на Se) в питательной среде RPMI-1640 (ПанЭко) при 37°С в течение 24 часов, контрольную группу - без добавления нанокомпозита.

Оценку эффекта воздействия на культуру опухолевых клеток и распределение нанокомпозита элементного селена и арабиногалактана проводили с использованием световой микроскопии в комбинированном режиме (дифференциальный интерференционный контраст + флюоресценция). Как известно, наноструктурированные селенсодержащие соединения на основе арабиногалактана способны к флюоресценции в широком диапазоне длин волн - от 405 до 514 нм [Шурыгина И.А., Родионова Л.В., Шурыгин М.Г., Сухов Б.Г., Кузнецов С.В., Попова Л.Г., Дремина Н.Н. Конфокальная микроскопия в изучении влияния оригинальных проферментных наногликоконъюгатов элементного селена на регенерацию опорных тканей // Известия Российской академии наук. Серия физическая. 2015. Т. 79. №2. С. 280-282].

Готовили мазки, визуализацию свечения проводили на исследовательском микроскопе Nikon Eclipse 80i с приставкой для эпифлюоресценции DIH-M с фильтром Nikon TRITC (возбуждение 528-553 нм, дихроичное зеркало 565 LP, эмиссия 590-650 нм).

Установлено, что у контрольной группы свечения клеток асцитной карциномы Эрлиха через 24 часа инкубации не обнаружено (Рис. 3А). На Фиг. 3Б представлено яркое свечение ядер клеток асцитной карциномы Эрлиха после инкубации с нанокомпозитом элементного селена и арабиногалактана в дозе 7.5 мг в пересчете на Se на кг через 24 часа инкубации (светятся проникшие в опухолевые клетки наночастицы элементного селена, обладающие люминесцентными свойствами полупроводниковых "квантовых точек").

Таким образом, в настоящем примере представлено избирательное накопление селенового нанокомпозита в ядре опухолевых клеток.

Пример 11.

Эксперименты были проведены на белых нелинейных мышах массой тела 20-25 г, самцах (N=80), в осенне-зимний период, разводимых в виварии научно-исследовательского противочумного института Сибири и Дальнего Востока (ветеринарный сертификат 254 №0336050 от 28.07.2010). Культуру перепрививаемого штамма асцитной карциномы Эрлиха приобрели в питомнике Федерального государственного учреждения науки «Государственный научный центр вирусологии и биотехнологии «Вектор» (Россия, Новосибирская область, поселок Кольцово), ветеринарный сертификат 254 №0336050 от 28 июля 2010 г. Все исследования выполнены в соответствии с этическими требованиями по работе с экспериментальными животными, которые изложены в следующих регламентирующих документах: «Хельсинская декларация всемирной медицинской ассоциации» (2000); «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ» (2005); «правила лабораторной практики» (приложение к приказу министерства здравоохранения Российской Федерации №708 от 23 августа 2010 г.)

Всем животным внутрибрюшинно вводили культуру перепрививаемого штамма асцитной карциномы Эрлиха в дозе 3×106 клеток в 0.2 мл физиологического раствора. Контрольной группе вводили только культуру перепрививаемого штамма асцитной карциномы Эрлиха. Опытным группам через 24 часа после перепрививки вводили внутрибрюшинно раствор нанокомпозита элементного селена и арабиногалактана в стерильной воде однократно в дозе 2.5 мг, 5 мг и 7.5 мг на кг живой массы (в пересчете на Se).

День забора материала определяли периодом логарифмического увеличения числа клеток (лог-фаза роста опухоли) после появления опухоли в организме, которым явился 10-й день с момента прививки. Определяли объем асцитной жидкости, концентрацию в ней клеток опухоли, морфологические характеристики клеток асцитной карциномы Эрлиха. Органы (печень, сальник, кишечник, переднюю брюшную стенку) заливали в парафин, готовили срезы, депарафинировали, изучали наличие флюоресценции тканей. На специальных группах животных определяли продолжительность жизни животных. Результаты представлены в таблице 1 (рис. 5)Изучение морфологии опухолевых клеток у животных после введения нанокомпозита элементного селена и арабиногалактана продемонстрировало резкое повышение количества форм с признаками дегенерации, в то время как у животных без лечения клетки опухоли не имели дегенеративных изменений. Проведенные исследования демонстрирует Фиг. 4Б, окраска ядерным красителем Hoechst 33342. Для сравнения на Фиг. 4А представлены клетки асцитной карциномы Эрлиха, полученные от мышей контрольной группы на 10 день после перепрививки опухоли. Видны сохранные клетки без признаков дегенеративных изменений. На фиг. 4Б представлены клетки асцитной карциномы Эрлиха, полученные от мышей опытной группы №3 (доза селена 7.5 мг/кг) на 10 день после перепрививки опухоли. Видны множественные дегенеративные формы.

Изучали органы (печень, сальник, кишечник, переднюю брюшную стенку) на наличие флюоресценции селенового нанокомпозита в тканях. Исследование проведено на микроскопе Nikon Eclipse 80i с приставкой для эпифлюоресценции DIH-M с фильтром Nikon TRITC (возбуждение 528-553 нм, дихроичное зеркало 565 LP, эмиссия 590-650 нм). Специфического свечения в органах не зафиксировано, что свидетельствует об избирательном накоплении нанокомпозита элементного селена и арабиногалактана в ядрах опухолевых клеток. Таким образом, установлено достоверное снижение объема асцитной жидкости, концентрации опухолевых клеток и повышение продолжительности жизни животных. Пролонгированность действия подтверждается токсическим эффектом по отношению к опухолевым клеткам через 9 суток после однократного введения разработанного нанокомпозита. Полученный объем информации свидетельствует о выраженной противоопухолевой активности нанокомпозита элементного селена и арабиногалактана с избирательным действием на опухолевые клетки.


Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов
Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов
Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов
Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов
Источник поступления информации: Роспатент

Показаны записи 41-46 из 46.
19.01.2018
№218.016.0ce5

Способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при...
Тип: Изобретение
Номер охранного документа: 0002632816
Дата охранного документа: 10.10.2017
20.01.2018
№218.016.1e18

Оптический материал инфракрасного диапазона и способ его получения

Изобретение относится к монокристаллическим оптическим неорганическим материалам, которые могут использоваться в оптической технике. Оптический материал представляет собой монокристаллический моноиодид индия InI ромбической сингонии с областью спектрального пропускания до 51 мкм. Способ...
Тип: Изобретение
Номер охранного документа: 0002640764
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1e6e

Способ получения виниловых эфиров аминофенолов

Изобретение относится к усовершенствованному способу получения виниловых эфиров аминофенолов общей формулы (I). Соединения используются как строительные блоки в органическом синтезе и могут быть использованы в качестве интермедиатов для получения биологически - активных соединений, например,...
Тип: Изобретение
Номер охранного документа: 0002640808
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.258d

Способ получения 1-r-индол-3-илсульфанилацетатов (2-гидроксиэтил)аммония

Изобретение относится к способу получения гетероциклических соединений индольного ряда - 1-Н-, 1-метил-, 1-бензилиндол-3-илсульфанилацетатов (2-гидроксиэтил)аммония, которые обладают широким спектром действия, например, являются селективными эритропоэз- и иммуномодуляторами с минимальным...
Тип: Изобретение
Номер охранного документа: 0002642778
Дата охранного документа: 26.01.2018
20.03.2019
№219.016.e9eb

Композиция и способ производства овсяных пряников с использованием профилактической добавки - арабиногалактана

Изобретение относится к пищевой промышленности. Композиция включает муку, сахар-песок, маргарин, изюм, соль пищевую, лецитин, ванилин, корицу, углеаммонийную соль, соду питьевую и профилактическую добавку. В качестве муки используют смесь пшеничной и овсяной муки. В качестве профилактической...
Тип: Изобретение
Номер охранного документа: 0002460303
Дата охранного документа: 10.09.2012
24.03.2020
№220.018.0f1f

Флуоресцентный сенсор для детектирования лизосом in vitro

Изобретение относится к химико-фармацевтической промышленности. Флуоресцентный сенсор для детектирования лизосом in vitro содержит флуорофор семейства BODIPY, при этом в качестве флуорофора содержит 4,4-дифторо-5-фенил-3-(1,5-дифенил-3-1Н-пиразолил)-8-трифторметил-4-бора-3а,4а-диаза-8-индацен....
Тип: Изобретение
Номер охранного документа: 0002717308
Дата охранного документа: 20.03.2020
Показаны записи 51-60 из 73.
01.03.2019
№219.016.cfcd

Производные 1-аллилимидазола

Настоящее изобретение относится к новым производным 1-аллилимидазола с солями металлов, где R - аллил, Э - металл, например: Zn (II) или Со (II), An - хлор или ацетат, n - 2. Технический результат: получены новые производные 1-аллилимидазола, обладающие противогипоксическими действиями. 7 табл.
Тип: Изобретение
Номер охранного документа: 0002430090
Дата охранного документа: 27.09.2011
29.03.2019
№219.016.f81b

Средство для профилактики и лечения атеросклероза

Изобретение относится к химико-фармацевтической промышленности, медицине, фармакологии и представляет собой средство для профилактики и лечения атеросклеротического повреждения кровеносных сосудов, а также пред- и тромботических состояний, обладающее гиполипидемическим и антикоагулянтным и...
Тип: Изобретение
Номер охранного документа: 0002468789
Дата охранного документа: 10.12.2012
10.04.2019
№219.017.05ed

Способ получения фторидов металлов

Изобретение относится к нанотехнологии по разработке оптически прозрачной нанокерамики на основе простых и сложных фторидов. Изобретение касается способа получения фторидов металлов, заключающегося во взаимодействии газообразного фтористого водорода с соединениями щелочных, щелочноземельных и...
Тип: Изобретение
Номер охранного документа: 0002328448
Дата охранного документа: 10.07.2008
19.04.2019
№219.017.3106

Способ синтеза однофазного нанопорошка фторида бария, легированного фторидом редкоземельного металла

Изобретение может быть использовано в фотонике и неорганических синтезах в качестве каталитически активных фаз. Смешивают фторирующее соединение с раствором, содержащим соль бария и соль редкоземельного элемента, с получением осадка, который промывают и сушат. На смешивание с фторирующим...
Тип: Изобретение
Номер охранного документа: 0002411185
Дата охранного документа: 10.02.2011
29.04.2019
№219.017.3e1f

Способ моделирования дегенеративно-дистрофических изменений межпозвонкового диска

Изобретение относится к медицине, а именно к экспериментальной хирургии, нейрохирургии, и может быть использовано для моделирования дегенеративно-дистрофических изменений межпозвонкового диска. Проводят хирургический доступ к позвоночнику экспериментального животного - крысы. В качестве...
Тип: Изобретение
Номер охранного документа: 0002686438
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.40c4

Производные 1-алкенилимидазола

Изобретение относится к производным 1-алкенилимидазола общей формулы 1 где R - винил, алленил или изопропенил, R - водород или метил, Э - Zn(II) или Fe(III), An - хлор или ацетат, n - 1, 2 или 4, за исключением соединений, где R - винил, R - водород, Э - Zn(II), An - хлор или ацетат, n - 2....
Тип: Изобретение
Номер охранного документа: 0002397175
Дата охранного документа: 20.08.2010
29.04.2019
№219.017.4284

Средство для лечения отравлений и их осложнений

Изобретение относится к химико-фармацевтической промышленности и касается использования ацизола в качестве профилактического и лечебного средства при отравлениях нейротоксическими веществами. Для заявленного изобретения показана высокая эффективность ацизола в комплексной терапии...
Тип: Изобретение
Номер охранного документа: 0002331417
Дата охранного документа: 20.08.2008
18.05.2019
№219.017.54f8

Способ получения 4,5,6,7-тетрагидроиндола

Изобретение относится к усовершенствованному способу получения 4,5,6,7-тетрагидроиндола взаимодействием циклогексаноноксима с ацетиленом при давлении, близком к атмосферному, в среде диметилсульфоксида в присутствии комплекс циклогексаноноксимата натрия с диметилсульфоксидом состава 1:1 формулы...
Тип: Изобретение
Номер охранного документа: 0002297410
Дата охранного документа: 20.04.2007
18.05.2019
№219.017.5610

Катализатор дегидрирования 4,5,6,7-тетрагидроиндола в индол и способ его получения

Изобретение относится к способу получения катализатора дегидрирования 4,5,6,7-тетрагидроиндола в индол. Описан катализатор дегидрирования 4,5,6,7-тетрагидроиндола в индол, содержащий сульфид никеля, нанесенный на оксид алюминия, при этом катализатор допирован ионами натрия и хлора и содержит...
Тип: Изобретение
Номер охранного документа: 0002345066
Дата охранного документа: 27.01.2009
18.05.2019
№219.017.5850

Способ получения индола

Изобретение относится к усовершенствованному способу получения индола, который заключается в каталитическом дегидрировании доступного 4,5,6,7-тетрагидроиндола 0.1-5.0% сульфидом никеля, нанесенного на оксид алюминия, и процесс ведут при температуре 250-400°С в растворителе и с использованием...
Тип: Изобретение
Номер охранного документа: 0002307830
Дата охранного документа: 10.10.2007
+ добавить свой РИД