×
25.08.2017
217.015.b52b

Результат интеллектуальной деятельности: Электрохимический генератор

Вид РИД

Изобретение

№ охранного документа
0002614242
Дата охранного документа
24.03.2017
Аннотация: Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос. Электрический насос установлен на ее входе и электрически связан с батарей топливных элементов. В контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника. Жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора. Изобретение позволяет повысить эффективность ЭХГ, особенно, если его мощность значительна. 1 ил.

Предлагаемое техническое решение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ), и может использоваться при разработке систем электроснабжения космических аппаратов (КА) на основе ЭХГ.

Несмотря на сравнительно высокую стоимость, такие агрегаты находят применение (хотя и ограниченное) на транспорте и в сетях распределенного электроснабжения, работают вместе с возобновляемыми источниками энергии. Наиболее оправданным (и технически, и экономически) является, однако, использование ЭХГ в космосе. Здесь применяются низкотемпературные генераторы щелочного и твердополимерного типов с рабочей температурой около 100°С. Твердополимерный генератор использовался, например, на КА «Space Shuttle», щелочной ЭХГ был разработан для корабля «Буран», использовался ранее на борту «Ароllо» (С.А. Худяков «Космические энергоустановки», М.: Знание, 1984 г., стр. 15, серия «Космонавтика, астрономия»). Существует также перспектива использования ЭХГ для лунной базы (Глухих И.Н. и др. «Обеспечение лунной базы электроэнергией, теплом, водородом и кислородом на основе солнечных батарей и аккумулятора энергии с водородным циклом». Изв. РАН, журнал Энергетика, №3, 2007 г., стр. 35-56, а также Изв. РАН, журнал Энергетика, №1, 2009 г., стр. 19-26). Во всех этих случаях для охлаждения ЭХГ используется система охлаждения КА, которая в свою очередь сбрасывает это тепло в окружающее пространство.

В качестве аналога данному предложению может служить любой из бортовых ЭХГ, независимо от его типа. Их общим недостатком является необходимость сброса генерируемого ими тепла в бортовую систему охлаждения КА. При значительной мощности генератора этого тепла достаточно много, поскольку КПД существующих низкотемпературных ЭХГ не превышает 50%. Такая дополнительная тепловая нагрузка на систему охлаждения КА, особенно низкотемпературное тепло ЭХГ, требует существенного увеличения массогабаритных параметров ее тепловых панелей-излучателей.

Более близким к данному предложению является схема бортового ЭХГ с «самоохлаждением», принятого за прототип, и описанная в статье «Повышение эффективности кислородо-водородного ЭХГ космического назначения», авторы: Глухих И.Н., Челяев В.Ф., Щербаков А.Н., Изв. РАН, журнал «Энергетика» №5, 2014 г., с. 87-91. Электрохимический генератор содержит батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник (теплообменник - сублиматор), установленный на выходе этой системы охлаждения, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов. В данном устройстве значительная часть тепла сбрасывается не в систему охлаждения КА, а в окружающее пространство, что достигается за счет испарения в вакуум реакционной воды ЭХГ. В данной схеме эта вода сначала, как обычно, конденсируется с помощью системы охлаждения КА. Затем полученная жидкость начинает циркулировать по дополнительному собственному контуру охлаждения генератора, включающему сублиматор, «открытый» в вакуум. Здесь, при испарении воды (или льда) в вакуум, происходит охлаждение оставшейся жидкости, циркулирующей в контуре. В результате потребление «холода» от системы охлаждения КА сокращается. Циркуляция воды в собственном контуре охлаждения ЭХГ стимулируется при этом насосом, подключенным к самому генератору (точнее, к батарее топливных элементов); таким образом, генератор сам себя охлаждает. Это привносит в систему отрицательную обратную связь, что, как известно из теории управления, повышает устойчивость системы. Недостатком прототипа является потеря воды, что в условиях космического полета, особенно пилотируемого, нежелательно. Кроме того, при достигнутом в настоящее время КПД ЭХГ (до 50%), такая схема не обеспечивает полной утилизации тепла, выделяемого ЭХГ. В конечном счете тепло электрохимической реакции, как и прежде, не используется для выработки дополнительной электроэнергии.

Задачей настоящего предложения является повышение электрического КПД низкотемпературного ЭХГ за счет тепла, которое он вырабатывает. Следует отметить, что утилизировать низкопотенциальное тепло всегда сложнее, чем высокотемпературное.

Техническим результатом изобретения является повышение эффективности ЭХГ, особенно, если его мощность значительна (от нескольких киловатт до нескольких десятков киловатт).

Технический результат достигается за счет того, что в электрохимическом генераторе, включающем батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, в состав которого входит охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батареей топливных элементов, в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.

Суть предложения в том, что тепло электрохимической реакции утилизируется за счет электроэнергии, вырабатываемой в этой же реакции, т.е. работа системы охлаждения БТЭ поддерживается самой батареей. При этом количество электроэнергии, выработанной при утилизации тепла, будет больше, чем электроэнергии, затраченной на это. Основные энергозатраты идут в этом случае на работу побудителя расхода теплоносителя (насоса), который по сути дела является электромеханическим приводом собственной системы охлаждения БТЭ. Он же задает режим работы турбины, при этом часть электроэнергии, поступающей от БТЭ, расходуется также и на все другие нужды системы охлаждения батареи, включая потери энергии в ее элементах. Предлагаемое устройство является в сущности низкотемпературной гибридной энергоустановкой для преобразования химической энергии водорода в электроэнергию. При этом, несмотря на то, что КПД турбины при (низких) рабочих температурах твердополимерного или щелочного ЭХГ будет сравнительно небольшим, общая эффективность установки будет выше, чем у обычного ЭХГ, поскольку генерируемое им тепло не отводится из генератора полностью, а частично преобразуется в электричество в системе охлаждения БТЭ. При этом энергопотребление самой этой системы должно быть достаточно малым, т.е. КПД ее элементов - достаточно высоким. Несложные оценки позволяют показать, что электрический КПД предлагаемого ЭХГ будет больше КПД БТЭ, при условии, что насос системы охлаждения БТЭ будет потреблять часть (х) электроэнергии, производимой батареей, не более чем

при этом превышение к КПД ЭХГ над КПД БТЭ будет определяться выражением:

где kтэ - КПД БТЭ; kт - КПД турбины; kн - КПД насоса; kэг - КПД электрогенератора.

Здесь учитывается, что преобразование энергии, передаваемой из БТЭ в контур ее системы охлаждения, происходит по цепочкам:

тепловая энергия - «БТЭ - турбина - электрогенератор»;

электроэнергия - «БТЭ - насос - турбина - электрогенератор».

В частности, для типичных значений КПД агрегатов, входящих в схему генератора, а именно:

kтэ=0,5 (низкотемпературные ЭХГ);

kн=0,6 (поршневые насосы);

kт=0,3 (газовые турбины мощностью несколько киловатт);

kэг=0,8 (электрогенераторы примерно такой же мощности),

оценка по соотношению (2) дает величину около 7-10% при энергопотреблении насоса х=0,05-0,1 (т.е. 5-10%). Таким образом, КПД ЭХГ со «встроенной» газовой турбиной может сравниться с КПД лучших парогазовых установок (около 60%).

Конструкция предлагаемого устройства поясняется схемой на фиг. 1, где обозначено: 1 - батарея топливных элементов (БТЭ); 2 - система охлаждения БТЭ; 3 - насос; 4 - охлаждающий теплообменник; 5 - газожидкостный эжектор (ГЖЭ); 6 - газожидкостный сепаратор (ГЖС); 7 - газовая турбина; 8 - электрогенератор.

Система охлаждения (2) БТЭ (1) входит в замкнутый контур циркуляции жидкого теплоносителя, который включает в себя также охлаждающий теплообменник (4), вход которого гидравлически связан с жидкостной полостью ГЖС (6), а выход подключен ко входу насоса (3), электрически связанного с БТЭ (1) и подключенного к системе охлаждения (2). Вход ГЖС (6) подключен к выходу ГЖЭ (5). Вход последнего по жидкости соединен с выходом системы охлаждения (2), а вход по газу - с выходом турбины (7), которая своим входом соединяется с газовой полостью ГЖС (6). Турбина (7) приводит в действие электрогенератор (8), механически с ней связанный (например, размещенный на ее оси).

Работает устройство следующим образом. Тепло, выделяемое батареей топливных элементов (1), нагревает жидкий теплоноситель в системе охлаждения (2). При этом испарения жидкости не происходит - это не допускается технологией эксплуатации низкотемпературных ЭХГ. В частности, если теплоносителем служит вода, это условие обеспечивается автоматически, поскольку рабочие температуры низкотемпературных генераторов не превышают 100°С.

Из системы охлаждения (2) нагретая жидкость-теплоноситель направляется в ГЖЭ (5), где она распыляется в холодном газе, поступающем сюда из турбины (7). ГЖЭ (5) в данном случае работает как газокапельный теплообменник, в котором происходит передача тепла от капель жидкости к газу. Из ГЖЭ (5) газокапельная смесь попадает в ГЖС (6), где происходит разделение смеси по фазам. Нагретый жидкостью газ из ГЖС (6) направляется на вход газовой турбины (7), а предварительно охлажденная газом жидкость - в охлаждающий теплообменник (4), где она дополнительно охлаждается (например, с помощью внешней системы охлаждения), а затем поступает на вход насоса (3). Последний снова направляет жидкость в систему охлаждения (2) БТЭ (1), и рабочий цикл теплоносителя замыкается.

При использовании высокоэффективных агрегатов в системе охлаждения БТЭ (насос, турбина, генератор) предлагаемая схема ЭХГ (со «встроенной» турбиной) позволяет заметно повысить эффективность преобразования химической энергии в электрическую.

Электрохимический генератор, включающий батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов, отличающийся тем, что в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.
Электрохимический генератор
Электрохимический генератор
Источник поступления информации: Роспатент

Показаны записи 281-290 из 370.
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
20.02.2019
№219.016.bd12

Коммутатор напряжения с защитой блока нагрузки от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой блока нагрузки от перегрузки по току. Коммутатор напряжения с защитой блока нагрузки от перегрузки по току содержит электронный ключ, который через датчик тока нагрузки...
Тип: Изобретение
Номер охранного документа: 02242831
Дата охранного документа: 20.12.2004
20.02.2019
№219.016.be4a

Устройство деления потока жидкости

Изобретение относится к машиностроению и предназначено для использования в системах терморегулирования изделий авиационной и космической техники, а также и в других областях техники. Устройство деления потока жидкости содержит корпус с расточкой, одним входным патрубком и двумя выходными...
Тип: Изобретение
Номер охранного документа: 0002342582
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.be53

Устройство для выбора объектов наблюдения с орбитального космического аппарата

Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью...
Тип: Изобретение
Номер охранного документа: 0002346241
Дата охранного документа: 10.02.2009
20.02.2019
№219.016.bf8e

Способ определения альбедо земли

Изобретение относится к космической технике. Способ включает последовательное размещение над отражающей поверхностью не менее чем в двух пространственных положениях чувствительной к регистрируемой радиации аппаратуры и определение моментов нахождения Солнца в зенитной области над снабженным...
Тип: Изобретение
Номер охранного документа: 0002351919
Дата охранного документа: 10.04.2009
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
Показаны записи 281-290 из 295.
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
09.06.2018
№218.016.5dc3

Коаксиальный электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Компрессор водорода включает корпус с входным и выходным штуцерами, а также пакет электроизолированных мембранно-электродных блоков, состоящих из...
Тип: Изобретение
Номер охранного документа: 0002656219
Дата охранного документа: 01.06.2018
+ добавить свой РИД