×
25.08.2017
217.015.b4ee

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНЫХ ПЛАЗМОННО-ЛЮМИНЕСЦЕНТНЫХ МАРКЕРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам синтеза гибридных наноструктурированных материалов, а именно к способу получения гибридных плазмонно-люминесцентных маркеров. Способ заключается в формировании металлических плазмонных наночастиц на поверхности неорганических люминесцентных наночастиц, предварительно активированных ионами редкоземельных металлов. Плазмонные наночастицы получают восстановлением из жидких растворов. При этом коллоидный раствор неорганических люминесцентных наночастиц в 1.2-дихлорэтане смешивают с раствором супрамолекулярного комплекса [{AuAg(CPh)}Au(PPh(СН)PPh)][PF] в 1.2-дихлорэтане с получением жидкого раствора, а восстановление жидкого раствора проводят лазерным излучением с длиной волны, соответствующей полосе поглощения супрамолекулярного комплекса, плотностью мощности от 0.1 до 1 мВт/см, при времени лазерного воздействия 10-60 мин. Изобретение позволяет обеспечить высокую химическую чистоту получаемых маркеров и малое количество технологических операций. 5 ил., 3 пр.

Изобретение относится к области нанотехнологии новых материалов, которые можно использовать в биомедицинской диагностике, криминалистике, экологическом мониторинге и тех областях, в которых требуется использование люминесцентных маркеров.

В настоящее время широкое применение находят гибридные наноструктуры, состоящие из люминесцентных и плазмонных наночастиц. Подобные структуры обеспечивают: увеличение эффективности, яркости свечения за счет снижения роли безизлучательных каналов релаксации и сенсибилизации люминесцентных наночастиц (создание дополнительных каналов поглощения излучения возбуждения и передачи его энергии на центр люминесценции); предотвращение коалесценции и повышение химической стабильности металлических наночастиц; создание поверхности, позволяющей прививать на нее функциональные группы; создание поверхности, изменяющей параметры люминесценции наночастиц в зависимости от характера окружения; придание дополнительных функциональных свойств для решения комплексных задач за счет композитного строения гибридных наноструктур. Сочетание люминесцентных наночастиц и плазмонных наночастиц позволяет увеличивать яркость люминесценции за счет эффекта плазмонного резонанса на металлических наночастицах.

Известно, что в качестве нанолюминофоров обычно исследуются органические флюорофоры и полупроводниковые квантовые точки, а так же люминесцентные кристаллические наночастицы, активированные редкоземельными ионами [1]. Объединение люминесцентных наночастиц с наночастицами подгруппы меди (обладающих плазмонным резонансом) обеспечивает усиление люминесценции за счет энергии плазмонных колебаний металлических наночастиц [2]. Вместе с тем, следует отметить работу [3], в которой показан еще один механизм усиления люминесценции благодаря плазмонным колебаниям. Речь идет о передаче энергии активации от сенсибилизатора люминофору посредством плазмонных колебаний. Авторы произвели сравнительные оценки эффективностей прямого диполь-дипольного и плазмонного каналов переноса энергии.

Недостатком органических флюорофоров является низкая фотостабильность, а у полупроводниковых квантовых точек - высокая токсичность. Кроме того, синтез органических люминофоров и квантовых точек происходит с использованием большого количества химических реагентов, следовые количества которых остаются в конечном продукте. Следовые количества посторонних химических примесей приводят к увеличению токсичности люминесцентных маркеров.

Известны композитные наночастицы для фото динамической диагностики [4], сочетающие плазмонный резонанс и люминесценцию. Недостатком представленных композитных наночастиц является использование органических флюорофоров 2,4 диметоксигематопорфирина иттербия, обладающих невысокой фотостабильностью и низкой химической устойчивостью.

Известны композитные материалы на основе квантовых точек InGaN/GaN и плазмонных наночастиц серебра [5], в которых наблюдается явление усиления интенсивности фотолюминесценции. Недостатком представленных материалов является высокая токсичность материала на основе квантовых точек.

Известен способ синтеза гибридных наноструктур [6], наиболее близкий по решаемой технической задаче и совокупности существенных признаков к заявляемому изобретению. Известный способ позволяет синтезировать гибридные наноструктуры NaYF4:Yb/Tm с усилением люминесценции за счет плазмонного резонанса золотых наночастиц или оболочек. В основе известного способа лежит многоступенчатый последовательный синтез гибридных наноструктур методами «мокрой» химии, используемыми для химического восстановления золота на поверхности люминесцентных наночастиц. Восстановление золота таким способом требует предварительного осаждения на поверхности люминесцентных наночастиц заранее приготовленных золотых затравок.

Недостатком известного способа является низкая химическая чистота гибридных плазмонно-люминесцентных наночастиц от остатков химических реагентов, высокая токсичность, небольшая глубина детектирования люминесцентных маркеров за счет невысокой яркости люминесценции (усиление люминесценции золотыми плазмонными наночастицами меньше, чем серебряными), большое количество сложных технологических этапов синтеза.

Заявляемое изобретение свободно от указанного недостатка.

Технический результат, достигаемый в заявляемом изобретении, заключается в повышении химической чистоты гибридных плазмонно-люминесцентных маркеров, уменьшении их токсичности, повышении глубины детектируемых люминесцентных маркеров за счет существенного повышения яркости люминесценции, уменьшении количества технологических этапов синтеза.

Указанный технический результат достигается тем, что в соответствии с заявленным изобретением коллоидный раствор люминесцентных кристаллических наночастиц в 1,2-дихлорэтане, покрытых буферным слоем SiO2, смешивается с раствором супрамолекулярного комплекса [{Au10Ag12(C2Ph)20}Au3(PPh2(C6H4)3PPh2)3][PF6]5 в 1,2-дихлорэтане с концентрацией 4 мг/мл и подвергается воздействию непрерывным лазерным излучением с длиной волны 325 нм и плотностью мощности 10 мВт/см2 по всему объему раствора.

Заявленный способ состоит в реализации лазерного восстановления металлических наночастиц на поверхности люминесцентных наночастиц. В основе лазерного восстановления лежит механизм фотоиндуцированной трансформации супрамолекулярного комплекса. Лазерное восстановление состоит из следующих последовательных процессов, возникающих после лазерного воздействия: возбуждение электронной подсистемы супрамолекулярного комплекса, внутримолекулярный перенос электрона с металлического ядра на лигандное окружение комплекса, электростатическая дестабилизация комплекса, восстановление металла из ядра комплекса, формирование стабилизирующей углеродной оболочки из лигандного окружения комплекса.

Сущность заявляемого изобретения иллюстрируется Фиг. 1 - Фиг. 3. На Фиг. 1 представлена схема реализации способа получения гибридных плазмонно-люминесцентных маркеров для биомедицинского применения. Длина волны источника лазерного излучения 1 выбирается в соответствии с полосой поглощения раствора супрамолекулярного комплекса в 1,2-дихлорэтане. Смесь раствора супрамолекулярного комплекса и взвеси люминесцентных наночастиц помещается в кювету 2, установленную на вортексе 3 для обеспечения однородности смеси на протяжении всего времени синтеза. Время синтеза составляет от 10 минут до 1 часа. На Фиг. 2 приведена микрофотография гибридных плазмонно-люминесцентных маркеров, полученная с помощью сканирующего электронного микроскопа. Светлые области размером около 10 нм - плазмонные Au-Ag/C наночастицы. Микрофотография на Фиг. 2 демонстрирует стохастическое распределение плазмонных наночастиц на поверхности люминесцентных наночастиц.

Заявленное изобретение было апробировано в лабораторных условиях СПбГУ в режиме реального времени. Результаты апробации приведены ниже в виде конкретных примеров.

Пример 1

В качестве супрамолекулярного комплекса используется золото-серебряный алкинил-фосфиновый комплекс [{Au10Ag12(C2Ph)20}Au3(PPh2(C6H4)3PPh2)3][PF6]5. Синтез комплекса проводили по методике, описанной в [7].

Супрамолекулярный комплекс в количестве 5 мг растворялся в 1 мл 1,2-дихлорэтана (ХЧ, «Вектон», ГОСТ 1942-86). Полученный раствор добавляли к коллоидному раствору люминесцентных кристаллических наночастиц в 1,2-дихлорэтане, покрытых буферным слоем SiO2, и перемешивали до получения однородной смеси.

Синтез гибридных плазмонно-люминесцентных маркеров проводили путем одностадийного лазерного восстановления металла на поверхности люминесцентных наночастиц. Для реализации способа синтеза гомогенную смесь коллоидного раствора люминесцентных кристаллических наночастиц и раствора супрамолекулярного комплекса подвергали воздействию излучения гелий-кадмиевого лазера (ГКЛ-30, длина волны излучения 325 нм, режим генерации - непрерывный, плотность мощности излучения 0.5 мВт/см, диаметр лазерного пучка 2 мм). Длительность облучения составляла 30 мин. Во время облучения раствор перемешивали при помощи Вортекса V3 (скорость вращения 500 об/мин, амплитуда вращения 3 мм) (схема представлена на Фиг.1).

Выделение гибридных люминесцентных маркеров из раствора проводили при помощи лабораторной центрифуги Sigma 2-16Р (скорость вращения 10000 об/мин). После центрифугирования гибридные плазмонно-люминесцентные маркеры промывались ацетоном (ХЧ, «Вектон», ТУ 2633-018-44493179-98).

Полученные гибридные плазмонно-люминесцентные маркеры исследовали методами сканирующей электронной микроскопии и энергодисперсионного анализа. Согласно данным сканирующей электронной микроскопии (Фиг. 2) и спектроскопии энергетической дисперсии (Фиг. 3) полученные наноструктуры состоят из нанокристаллических частиц ванадата иттрия, активированного европием, и гибридных плазмонных Au-Ag/C наночастиц на их поверхности (светлые точки размером около 10 нм). Отсутствие посторонних химических включений свидетельствует о высокой химической чистоте синтезированных маркеров. Наличие на спектре энергетической дисперсии (Фиг. 3) углерода и стохастическое распределение неагломерированных золото-серебряных наночастиц (Фиг. 2) свидетельствуют о стабилизации металлических наночастиц и уменьшении их токсичности за счет углерода, обладающего высокой степенью биосовместимости.

Пример 2

В качестве супрамолекулярного комплекса используется золото-серебряный алкинил-фосфиновый комплекс [{Au10Ag12(C2Ph)20}Au3(PPh2(C6H4)3PPh2)3][PF6]5. Синтез комплекса проводили по методике, описанной в [7].

Супрамолекулярный комплекс в количестве 5 мг растворялся в 1 мл 1,2-дихлорэтана (ХЧ, «Вектон», ГОСТ 1942-86). Полученный раствор добавляли к коллоидному раствору люминесцентных кристаллических наночастиц в 1,2-дихлорэтане, покрытых буферным слоем SiO2, и перемешивали до получения однородной смеси.

Синтез гибридных плазмонно-люминесцентных маркеров проводили путем одностадийного лазерного восстановления металла на поверхности люминесцентных наночастиц. Для реализации способа синтеза гомогенную смесь коллоидного раствора люминесцентных кристаллических наночастиц и раствора супрамолекулярного комплекса подвергали воздействию излучения гелий-кадмиевого лазера (ГКЛ-30, длина волны излучения 325 нм, режим генерации - непрерывный, плотность мощности излучения 0.1 мВт/см2, диаметр лазерного пучка 2 мм). Длительность облучения составляла 1 час. Во время облучения раствор перемешивали при помощи Вортекса V3 (скорость вращения 500 об/мин, амплитуда вращения 3 мм) (схема представлена на Фиг. 1).

Выделение гибридных люминесцентных маркеров из раствора проводили при помощи лабораторной центрифуги Sigma 2-16Р (скорость вращения 10000 об./мин). После центрифугирования гибридные плазмонно-люминесцентные маркеры промывались ацетоном (ХЧ, «Вектон», ТУ 2633-018-44493179-98). Микрофотография полученных гибридных люминесцентных маркеров представлена на Фиг. 4.

Пример 3

В качестве супрамолекулярного комплекса используется золото-серебряный алкинил-фосфиновый комплекс [{Au10Ag12(C2Ph)20}Au3(PPh2(C6H4)3PPh2)3][PF6]5. Синтез комплекса проводили по методике, описанной в [7].

Супрамолекулярный комплекс в количестве 5 мг растворялся в 1 мл 1,2-дихлорэтана (ХЧ, «Вектон», ГОСТ 1942-86). Полученный раствор добавляли к коллоидному раствору люминесцентных кристаллических наночастиц в 1,2-дихлорэтане, покрытых буферным слоем SiO2, и перемешивали до получения однородной смеси.

Синтез гибридных плазмонно-люминесцентных маркеров проводили путем одностадийного лазерного восстановления металла на поверхности люминесцентных наночастиц. Для реализации способа синтеза гомогенную смесь коллоидного раствора люминесцентных кристаллических наночастиц и раствора супрамолекулярного комплекса подвергали воздействию излучения гелий-кадмиевого лазера (ГКЛ-30, длина волны излучения 325 нм, режим генерации - непрерывный, плотность мощности излучения 1 мВт/см2, диаметр лазерного пучка 2 мм). Длительность облучения составляла 10 мин. Во время облучения раствор перемешивали при помощи Вортекса V3 (скорость вращения 500 об/мин, амплитуда вращения 3 мм) (схема представлена на Фиг. 1).

Выделение гибридных люминесцентных маркеров из раствора проводили при помощи лабораторной центрифуги Sigma 2-16Р (скорость вращения 10000 об/мин). После центрифугирования гибридные плазмонно-люминесцентные маркеры промывались ацетоном (ХЧ, «Вектон», ТУ 2633-018-44493179-98). Микрофотография полученных гибридных люминесцентных маркеров представлена на Фиг.5.

Таким образом, приведенные примеры подтверждают заявленный технический результат о повышении химической чистоты гибридных плазмонно-люминесцентных маркеров, уменьшении их токсичности, повышении глубины детектируемых люминесцентных маркеров за счет существенного повышения яркости люминесценции, уменьшении количества технологических этапов синтеза.

Технико-экономическая эффективность заявленного изобретения состоит в том, что наряду со свойственной прототипу возможностью синтеза гибридных наноструктур, обладающих эффектом усиления интенсивности люминесценции за счет плазмонного резонанса на золотых наночастицах, преимуществом данного способа является одностадийный синтез химически чистых маркеров, в состав которых входят нетоксичные Au-Ag/C плазмонные наночастицы. Использование в качестве плазмонных наночастиц сплав золото-серебро дает возможность повысить эффект усиления люминесценции по сравнению с золотыми наночастицами и, таким образом, увеличить глубину обнаружения маркеров. Заявленное изобретение может стать эффективным способом синтеза гибридных плазмонно-люминесцентных макреров в биомедицинской диагностике, криминалистике, экологическом мониторинге и других областях.

Список использованных источников информации

1. Tang L., Ding К.J.J., Chen N., Du G.P. An ion аdsorption-diffusion process for preparing YVO4:Eu3+ @SiO2 core-shell nanoparticles with strong luminescence // Ceramics International. - 2014. - T. 40, №7. - C. 9621-9628.

2. Derom S., Berthelot A., Pillonnet A., Benamara O., Jurdyc A.M., Girard C., Colas Des Francs G. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles // Nanotechnology. - 2013. - V. 24. - P. 495704.

3. Кислов Д.А., Кучеренко M.Г., Чмерева Т.М. Ускоренный режим безызлучательного переноса энергии электронного возбуждения между молекулами вблизи проводящих тел // Вестник Оренбургского ГУ. - 2011. - Т. 4, №123. - С. 128-135.

4. Патент РФ №2463074 С1, МПК А61K 49/18, 2006.

5. Sun L., Zhang S., Liu F., Han M. Influence of localized surface plasmons on carrier dynamics in InGaN/GaN quantum wells covered with Ag nanoparticles for enhanced photoluminescence // Superlattices and Microstructures. - 2015 - V. 86, - P. 418-424.

6. Zhang H., Li Yu., Ivanov I.A., Qu Yo., Huang Yu, Duan X. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells // Angewandte Chemie. - 2010. - V. 49, - P. 2865-2868. (прототип)

7. Koshevoy I.O., Karttunen A.J., Tunik S.P., Haukka M., Selivanov S.I., Melnikov A.S., Serdobintsev P.Y., Pakkanen T.A. Synthesis, Characterization, Photophysical, and Theoretical Studies of Supramolecular Gold(I)-Silver(I) Alkynyl-Phosphine Complexes // Organometallics. - 2009. - V. 28, - P. 1369-1376.

Способ получения гибридных плазмонно-люминесцентных маркеров, заключающийся в формировании металлических плазмонных наночастиц на поверхности неорганических люминесцентных наночастиц, предварительно активированных ионами редкоземельных металлов, плазмонные наночастицы получают восстановлением из жидких растворов, отличающийся тем, что коллоидный раствор неорганических люминесцентных наночастиц в 1.2-дихлорэтане смешивают с раствором супрамолекулярного комплекса [{AuAg(CPh)}Au(PPh(СН)PPh)][PF] в 1.2-дихлорэтане с получением жидкого раствора, а восстановление жидкого раствора проводят лазерным излучением с длиной волны, соответствующей полосе поглощения супрамолекулярного комплекса, плотностью мощности от 0.1 до 1 мВт/см, при времени лазерного воздействия 10-60 мин.
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНЫХ ПЛАЗМОННО-ЛЮМИНЕСЦЕНТНЫХ МАРКЕРОВ
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНЫХ ПЛАЗМОННО-ЛЮМИНЕСЦЕНТНЫХ МАРКЕРОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 61.
29.12.2017
№217.015.fbea

Способ спектрального определения микроэлементного состава вязких органических жидкостей

Способ спектрального определения микроэлементного состава вязких органических жидкостей заключается в том, что анализу подвергается малый объем пробы, который предварительно минерализуется под действием малого объема концентрированной азотной кислоты при нагревании. Пробоподготовка производится...
Тип: Изобретение
Номер охранного документа: 0002638586
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.01f6

Устройство с многолучевым спектральным фильтром для обнаружения метана в атмосфере

Изобретение относится к области спектральных измерений и касается устройства с многолучевым спектральным фильтром для обнаружения метана в атмосфере. Устройство включает в себя размещенные в общем корпусе и оптически связанные излучатель расходящегося светового пучка со сплошным спектром,...
Тип: Изобретение
Номер охранного документа: 0002629886
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.1a85

Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта iii

Изобретение относится к способам лазерной нейтрализации взрывоопасных объектов и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов. В основу...
Тип: Изобретение
Номер охранного документа: 0002636525
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.32c9

Способ получения металлоорганического каркасного соединения с люминесцентными свойствами

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде...
Тип: Изобретение
Номер охранного документа: 0002645513
Дата охранного документа: 21.02.2018
10.05.2018
№218.016.3888

Геоэлектрический способ определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса

Изобретение относится к области геофизических исследований мерзлых грунтов и может быть использовано для определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса, а также для изучения грунтов криолитозоны. Сущность изобретения заключается в вертикальном...
Тип: Изобретение
Номер охранного документа: 0002646952
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3890

Ультразвуковой способ контроля структуры дисперсных сред

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А, прошедшего...
Тип: Изобретение
Номер охранного документа: 0002646958
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3b97

Способ получения нативного белка пролонгирующего действия в составе полимерных наносфер и резорбируемых микросфер для доставки

Изобретение относится к области медицины, в частности к наномедицине, которая использует биодеградируемые наносферы и микросферы для включения в их состав биологически активных белков для стабилизации их структуры. Cпособ предусматривает предварительное включение гистона животного происхождения...
Тип: Изобретение
Номер охранного документа: 0002647466
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.411b

Устройство для геоэлектрического профилирования почвенно-мерзлотного комплекса

Изобретение относится к области геофизических измерений и может быть использовано для вертикального электрического зондирования почвенно-мерзлотного комплекса, почв, грунтов и иных минеральных образований. Сущность заявленного устройства заключается в том, что устройство для геоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002649030
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.412d

Способ рентгенофазового анализа нанофаз в алюминиевых сплавах

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно...
Тип: Изобретение
Номер охранного документа: 0002649031
Дата охранного документа: 29.03.2018
Показаны записи 21-30 из 35.
29.12.2017
№217.015.fbea

Способ спектрального определения микроэлементного состава вязких органических жидкостей

Способ спектрального определения микроэлементного состава вязких органических жидкостей заключается в том, что анализу подвергается малый объем пробы, который предварительно минерализуется под действием малого объема концентрированной азотной кислоты при нагревании. Пробоподготовка производится...
Тип: Изобретение
Номер охранного документа: 0002638586
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.01f6

Устройство с многолучевым спектральным фильтром для обнаружения метана в атмосфере

Изобретение относится к области спектральных измерений и касается устройства с многолучевым спектральным фильтром для обнаружения метана в атмосфере. Устройство включает в себя размещенные в общем корпусе и оптически связанные излучатель расходящегося светового пучка со сплошным спектром,...
Тип: Изобретение
Номер охранного документа: 0002629886
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.1a85

Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта iii

Изобретение относится к способам лазерной нейтрализации взрывоопасных объектов и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов. В основу...
Тип: Изобретение
Номер охранного документа: 0002636525
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.32c9

Способ получения металлоорганического каркасного соединения с люминесцентными свойствами

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде...
Тип: Изобретение
Номер охранного документа: 0002645513
Дата охранного документа: 21.02.2018
22.03.2019
№219.016.ec6c

Api для построения сетей программного комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT) и позволяет описывать структуру сети на более высоком уровне, чем стандартные средства предоставляемые в таких системах...
16.04.2019
№219.017.0cb7

Веб-сервис динамического изменения пропускной способности сети комплекса madt

Качество работы виртуальных сетей регулируется утилитами пакета tcconfig. Нами реализована регулировка пропускной способности, задержки, процента потери, повреждения, дупликации и перестановки пакетов в сети в формате веб-сервиса и визуального интерфейса, позволяющего пользователю...
16.04.2019
№219.017.0cb8

Веб сервис визуализации работы распределённого приложения в лаборатории программного комплекса madt

Приложение строит трёхмерный граф на основе конфигурации лаборатории комплекса MADT и визуализирует в нём сообщения, получаемые от узлов сети. В зависимости от содержания сообщения узел графа, соответствующий узлу сети, в реальном времени меняет размер и цвет. Также приложение выводит текстовый...
20.04.2019
№219.017.3606

Api мониторинга узлов комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT). Для осуществления мониторинга узлов программного комплекса MADT разработан интерфейс прикладного программирования...
20.04.2019
№219.017.3607

Программный комплекс моделирование и анализ распределенных технологий (madt)

Программный комплекс MADT позволяет осуществлять моделирование работы сетевых приложений, веб- и микросервисов, распределенных реестров и баз данных, алгоритмов консенсуса, протоколов взаимодействия между ними. Основными компонентами решения являются: - инструменты построения и моделирования сети...
+ добавить свой РИД