×
25.08.2017
217.015.b4b3

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ АВТОМОБИЛЬНОЙ ДОРОГИ И ХАРАКТЕРИСТИК ПРИДОРОЖНОЙ ПОЛОСЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геодезического контроля в дорожно-строительной отрасли и может быть использовано при строительстве или реконструкции автомобильных дорог. В заявленном способе выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги с помощью наземной или мобильной сканерной геодезической съемки в прямом и обратном направлении, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по обочине автомобильной дороги, а также твердые точки по сторонам обочины дорожного полотна в виде оснований столбов дорожных знаков и элементов обустройства автомобильной дороги. Выполняют наземное или мобильное лазерное сканирование контролируемого участка по опорным пунктам ПВО, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности дорожного полотна и опорные пункты ПВО, которые идентифицируются на сканах. Получают скан, передают результаты сканирования в ПЭВМ и с помощью компьютерной программы регистрируют в ней сканы, получают фактическую цифровую точечную трехмерную (3D) модель автомобильной дороги и придорожной полосы, Далее выполняют маршрутное фотографирование контролируемого участка дорожного полотна и прилегающей территории на ширину до 200 метров от оси автодороги в прямом и обратном направлении на базе беспилотного летательного аппарата. Передают результаты фотографирования в ПЭВМ, с помощью компьютерной программы регистрируют в ней ортофотопланы и производят построение цифровой фотограмметрической модели поверхности дорожного полотна и прилегающих к нему участков. По опорным пунктам ПВО трансформируют ее пространственные данные в данные фактической цифровой векторной трехмерной (3D) модели и получают интегральную реалистическую цифровую векторную трехмерную (3D) модель контролируемого участка автомобильной дороги и придорожной полосы, в этой же программе моделируют эталонную трехмерную модель автомобильной дороги и придорожной полосы. Совмещают ее по тем же опорным пунктам ПВО с полученной интегральной реалистической цифровой векторной трехмерной (3D) моделью автомобильной дороги и придорожной полосы. Далее формируют с заданной дискретностью продольные сечения, в автоматическом режиме распознают расхождения между фактическими значениями контролируемых параметров геометрических элементов интегральной реалистической цифровой векторной трехмерной (3D) модели и значениями эталонной трехмерной модели контролируемого участка автомобильной дороги и придорожной полосы, сравнивая полученные данные, определяют линейные геометрические параметры автомобильной дороги и придорожной полосы по поверхности измеряемого слоя, необходимые при строительстве или реконструкции автомобильных дорог. Технический результат - определение достоверных и точных значений параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы с применением технологии лазерного сканирования. 3 ил.

Данный способ относится к области геодезического контроля в дорожно-строительной отрасли. Известен способ определения геометрических параметров дорожного полотна и характеристик придорожной полосы с помощью нивелира и нивелирной рейки [ГОСТ Р 52577 - 2006 «Дороги автомобильные общего пользования. Методы определения параметров геометрических элементов автомобильных дорог», дата введения - 01.01.2007 г.], взятый в качестве прототипа.

Сущность данного способа состоит в том, что на контролируемом участке проводят измерения линейных параметров в продольном профиле автомобильной дороги с помощью рулетки измерительной металлической не ниже 3-го класса точности. Кроме того, для определения продольного уклона автомобильной дороги применяют нивелир, последовательно устанавливая нивелирную рейку в местах, обозначенных метками. По данным нивелирования вычисляют относительные отметки точек поверхности измеряемого слоя автомобильной дороги в местах разметки.

Недостатком этого способа является использование разных технических средств с различными точностными характеристиками, а так же невозможность повторения измерений, так как точки измерений не закрепляются планово-высотным обоснованием, поэтому невозможно произвести повторные измерения на контролируемом участке. Также недостатком этого способа является то, что данный способ предполагает контроль параметров геометрических элементов на небольших участках дороги без захвата придорожной полосы, а следовательно, в целом работы на всех участках выполняются с низкой производительностью труда. Кроме того, данный способ предполагает наличие человеческого фактора в процессе контроля, что ведет к снижению достоверности и точности измерения. Задачей предлагаемого технического решения является разработка способа определения геометрических параметров поверхности покрытия дорожного полотна и характеристик придорожной полосы с применением технологии лазерного сканирования.

Техническим результатом изобретения является определение достоверных и точных значений параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы с применением технологий лазерного сканирования.

Поставленная задача достигается тем, что в способе определения параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы, при котором определяют линейные геометрические параметры автомобильной дороги по поверхности измеряемого слоя, согласно техническому решению выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги и ее придорожной полосы с помощью наземной или мобильной сканерной геодезической съемки в прямом и обратном направлении, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по обочине автомобильной дороги через заданный интервал, а также твердые точки по сторонам обочины дорожного полотна в виде оснований столбов дорожных знаков и элементов обустройства автомобильной дороги. Выполняют наземное или мобильное лазерное сканирование контролируемого участка по опорным пунктам ПВО, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности автомобильной дороги и придорожной полосы и опорные пункты ПВО, которые идентифицируются на сканах, где пространственные координаты по осям X,Y соответствуют относительным плановым отметкам плановой сети, а пространственные координаты по оси Z соответствуют относительным высотным отметкам высотной сети. Получают скан, передают результаты сканирования (сканы) в ПЭВМ и с помощью компьютерной программы регистрируют в ней сканы, получают фактическую цифровую точечную трехмерную (3D) модель поверхности автомобильной дороги и придорожной полосы, где каждая точка этой модели имеет пространственные координаты по осям X, Y, Z отраженного лазерного луча от поверхности измеряемого слоя и других элементов обустройства автомобильной дороги с интегрированными в нее пространственными координатами по осям X, Y, Z опорных пунктов ПВО. Затем выполняют маршрутное фотографирование контролируемого участка дорожного полотна и прилегающей территории на ширину до 200 метров от оси автодороги в прямом и обратном направлении на базе беспилотного летательного аппарата. Передают результаты фотографирования в ПЭВМ, с помощью компьютерной программы регистрируют в ней ортофотопланы и производят построение цифровой фотограмметрической модели поверхности дорожного полотна и прилегающих к нему участков. По опорным пунктам ПВО трансформируют ее пространственные данные в данные фактической цифровой векторной трехмерной (3D) модели и получают интегральную реалистическую цифровую векторную трехмерную (3D) модель контролируемого участка автомобильной дороги и придорожной полосы, в этой же программе моделируют эталонную трехмерную модель автомобильной дороги и придорожной полосы, используя проектные значения измеряемых параметров геометрических элементов автомобильной дороги. Совмещают ее по тем же опорным пунктам ПВО с полученной интегральной реалистической цифровой векторной трехмерной (3D) моделью автомобильной дороги и придорожной полосы. Далее формируют с заданной дискретностью продольные сечения, в автоматическом режиме распознают расхождения между фактическими значениями контролируемых параметров геометрических элементов интегральной реалистической цифровой векторной трехмерной (3D) модели и значениями эталонной трехмерной модели контролируемого участка автомобильной дороги, сравнивая полученные данные, определяют линейные геометрические параметры автомобильной дороги по поверхности измеряемого слоя, необходимые при строительстве или реконструкции автомобильных дорог. Также формируют информацию об объектах придорожной полосы за счет совместного анализа данных, полученных с помощью наземной или мобильной сканерной геодезической съемки и съемки на базе беспилотного летательного аппарата.

Способ поясняется чертежами. На фиг. 1 представлена схема создания фактической цифровой точечной трехмерной (3D) модели контролируемого участка автомобильной дороги и придорожной полосы по данным лазерного сканирования. На фиг. 2 представлена схема создания цифровой фотограмметрической модели контролируемого участка автомобильной дороги и придорожной полосы по данным съемки с беспилотных летательных аппаратов. На фиг. 3 представлена схема создания интегральной реалистической цифровой векторной трехмерной (3D) модели автомобильной дороги и придорожной полосы. Предлагаемый способ осуществляется следующим образом. Используя проектные данные контролируемых параметров геометрических элементов автомобильной дороги, строят эталонную трехмерную модель контролируемого участка. Построение указанной модели осуществляется посредством любого известного продукта, например AutoCAD. Выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги с помощью наземной или мобильной сканерной геодезической съемки в прямом и обратном направлении, где в качестве опорных пунктов ПВО служат базовые станции GPS, размещенные по обочине автомобильной, а также твердые точки по сторонам обочины дорожного полотна в виде оснований столбов дорожных знаков и элементов обустройства автомобильной дороги. Затем выполняют наземное или мобильное лазерное сканирование контролируемого участка по опорным пунктам ПВО, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности дорожного полотна и прилегающих к нему участков и опорные пункты ПВО, которые идентифицируются на сканах, где пространственные координаты по осям X, Y соответствуют относительным плановым отметкам плановой сети, а пространственные координаты по оси Z соответствуют относительным высотным отметкам высотной сети. Получают скан, передают результаты сканирования (сканы) в ПЭВМ и с помощью компьютерной программы регистрируют в ней сканы, получают фактическую цифровую точечную трехмерную (3D) модель дорожного полотна, где каждая точка этой модели имеет пространственные координаты по осям X, Y, Z отраженного лазерного луча от поверхности измеряемого слоя и других элементов обустройства автомобильной дороги с интегрированными в нее пространственными координатами по осям X, Y, Z опорных пунктов ПВО (Фиг. 1). Далее выполняют маршрутное фотографирование контролируемого участка дорожного полотна и прилегающей территории на ширину до 200 метров от оси автодороги в прямом и обратном направлении на базе беспилотного летательного аппарата. Передают результаты фотографирования в ПЭВМ, с помощью компьютерной программы регистрируют в ней ортофотопланы и производят построение цифровой фотограмметрической модели поверхности дорожного полотна и прилегающих к нему участков (Фиг. 2). По опорным пунктам ПВО трансформируют ее пространственные данные в данные фактической цифровой векторной трехмерной (3D) модели и получают интегральную реалистическую цифровую векторную трехмерную (3D) модель контролируемого участка автомобильной дороги и прилегающих к нему участков (Фиг. 3), в этой же программе моделируют эталонную трехмерную модель автомобильной дороги, используя проектные значения измеряемых параметров геометрических элементов автомобильной дороги. Совмещают ее по тем же опорным пунктам ПВО с полученной интегральной реалистической цифровой векторной трехмерной (3D) моделью автомобильной дороги. Далее формируют с заданной дискретностью продольные сечения, в автоматическом режиме распознают расхождения между фактическими значениями контролируемых параметров геометрических элементов интегральной реалистической цифровой векторной трехмерной (3D) модели и значениями эталонной трехмерной модели контролируемого участка автомобильной дороги, сравнивая полученные данные, определяют линейные геометрические параметры автомобильной дороги по поверхности измеряемого слоя, необходимые при строительстве или реконструкции автомобильных дорог. Создание интегральной реалистической цифровой векторной трехмерной (3D) модели позволяет повысить эффективность работ за счет повышения достоверности и точности при определении значений параметров геометрических элементов автомобильной дороги и прилегающих к нему участков до значений 1-2 см. Также создание интегральной реалистической цифровой векторной трехмерной (3D) модели позволяет формировать информацию об объектах придорожной полосы за счет совместного анализа данных, полученных с помощью наземной или мобильной сканерной геодезической съемки и съемки на базе беспилотного летательного аппарата.

В целях повышения точности и достоверности при оценке качества всех основных элементов, параметров и характеристик автомобильных дорог, определяющих их транспортно-эксплуатационное состояние, предлагаемый способ позволяет автоматизировать весь процесс мониторинга состояния покрытия и обустройства автодороги и придорожной полосы.

Предлагаемый инновационный способ позволяет также повысить достоверность оценки параметров геометрических элементов автомобильных дорог при строительстве и контроле качества строительства и эксплуатации автомобильных дорог.


СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ АВТОМОБИЛЬНОЙ ДОРОГИ И ХАРАКТЕРИСТИК ПРИДОРОЖНОЙ ПОЛОСЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ АВТОМОБИЛЬНОЙ ДОРОГИ И ХАРАКТЕРИСТИК ПРИДОРОЖНОЙ ПОЛОСЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ АВТОМОБИЛЬНОЙ ДОРОГИ И ХАРАКТЕРИСТИК ПРИДОРОЖНОЙ ПОЛОСЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ АВТОМОБИЛЬНОЙ ДОРОГИ И ХАРАКТЕРИСТИК ПРИДОРОЖНОЙ ПОЛОСЫ
Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
25.08.2017
№217.015.b09e

Капсюлированная гильза для стрелкового оружия

Изобретение относится к боеприпасам, в частности к капсюлированным гильзам. Гильза имеет центральное отверстие в дне капсюльного гнезда и кольцевое углубление на периферийной части дна капсюльного гнезда и запрессованный в нее капсюль-воспламенитель, состоящий из металлического колпачка с...
Тип: Изобретение
Номер охранного документа: 0002613395
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b147

Способ формирования тонкоплёночного рисунка на подложке

Изобретение относится к оптическим технологиям формирования топологических структур на подложках, в частности к лазерным методам формирования на подложках топологических структур нано- и микроразмеров для нано- и микромеханики, микро- и наноэлектроники. В способе формирования тонкопленочного...
Тип: Изобретение
Номер охранного документа: 0002613054
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.c6bc

Акустическая линза

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны....
Тип: Изобретение
Номер охранного документа: 0002618600
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dd1c

Детекторная головка

Изобретение относится к области измерительной техники и касается детекторной головки. Детекторная головка включает в себя корпус, который выполнен в виде основания и крышки. В основании выполнен сквозной волноводный канал, а в крышке расположен короткозамыкатель. Между основанием и крышкой...
Тип: Изобретение
Номер охранного документа: 0002624608
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dfea

Способ определения поперечной ровности (колейности) поверхности дорожного полотна автомобильной дороги

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. При этом согласно изобретению планово-высотное обоснование (ПВО) на контролируемом участке автомобильной дороги создают методом мобильной сканерной съемки, где в качестве опорных пунктов ПВО служат базовые...
Тип: Изобретение
Номер охранного документа: 0002625091
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f16a

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к области получения изображений и касается способа формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн. Способ включает в себя облучение источником электромагнитного излучения...
Тип: Изобретение
Номер охранного документа: 0002631006
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0dcd

Кумулятивный заряд для формирования компактного элемента

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее...
Тип: Изобретение
Номер охранного документа: 0002633021
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ff9

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга оперативной обстановки паводковой ситуации с применением технологии дистанционного зондирования

Изобретение относится к способам геодезического мониторинга и может быть использовано для геодезического мониторинга паводковой ситуации. Сущность: на контролируемом участке создают планово-высотное обоснование (ПВО) по координатам X, Y, Z спутниковой привязки опознавательных знаков. Выполняют...
Тип: Изобретение
Номер охранного документа: 0002633642
Дата охранного документа: 16.10.2017
Показаны записи 31-35 из 35.
04.10.2018
№218.016.8f0f

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга деформационного состояния инженерного объекта

Изобретение относится к области создания трехмерных цифровых моделей. Технический результат – повышение достоверности и точности получаемых геопространственных данных за счет использования технологий лазерного сканирования в трехмерном пространстве. Способ получения, обработки, отображения и...
Тип: Изобретение
Номер охранного документа: 0002668730
Дата охранного документа: 02.10.2018
03.03.2019
№219.016.d244

Способ геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах с применением технологии лазерного сканирования

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты. Технический результат: повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002680978
Дата охранного документа: 01.03.2019
04.04.2019
№219.016.fc9c

Способ определения погрешности измерения углов наземным лазерным сканером

Изобретение относится к области метрологии в геодезической отрасли. Техническим результатом изобретения является определение достоверных и точных погрешностей измерения углов для наземных лазерных сканеров. Способ определения погрешности измерения углов наземным лазерным сканером заключается в...
Тип: Изобретение
Номер охранного документа: 0002429449
Дата охранного документа: 20.09.2011
29.08.2019
№219.017.c440

Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга. Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений...
Тип: Изобретение
Номер охранного документа: 0002698411
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dc68

Способ геодинамического мониторинга за смещениями блоков верхней части земной коры и деформационного состояния земной поверхности с применением технологии высокоточного спутникового позиционирования глобальной навигационной спутниковой системы (гнсс) глонасс /gps

Изобретение относится к области геодезических измерений. Технический результат - повышение точности и достоверности способа обработки геодезических измерений за счёт получения максимально точных значений пространственных координат опорных пунктов планово-высотной основы (ПВО) и наблюдательной...
Тип: Изобретение
Номер охранного документа: 0002704730
Дата охранного документа: 30.10.2019
+ добавить свой РИД