×
25.08.2017
217.015.b49f

Результат интеллектуальной деятельности: Способ гидроконверсии тяжелой части матричной нефти

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу гидроконверсии тяжелой части матричной нефти с получением жидких углеводородных смесей в присутствии распределенного в сырье молибденсодержащего катализатора при повышенной температуре и давлении водорода. Способ характеризуется тем, что в сырье - тяжелую часть матричной нефти с температурой кипения выше 350°C - вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°C и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора катализатора, затем из продуктов реакции выделяют дистиллятные фракции с температурой кипения до 250°C и остаток с температурой выше 250°C и указанный остаток в количестве 20-80% в расчете на содержание фракций выше 520°C в исходной тяжелой части матричной нефти возвращают на стадию подготовки сырья как рисайкл, остальную часть указанного остатка направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения выше 520°C, направляемого на стадию извлечения металлов, рисайкл при температуре 60-95°C смешивают с указанной тяжелой частью матричной нефти, вводят в нее водный раствор указанного прекурсора и повторяют последующие стадии. Использование предлагаемого способа позволяет исключить введение сторонних модификаторов, повысить глубину конверсии сырья и снизить выход кокса. 5 з.п. ф-лы, 11 пр., 1 табл.

Изобретение относится к способам переработки тяжелого углеводородного сырья с высоким содержанием смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть использовано при переработке высококипящих фракций матричной нефти.

Процесс гидрогенизационной переработки тяжелого сырья в присутствии гетерогенных наноразмерных и ультрадисперсных катализаторов с получением углеводородных фракций с более низкой температурой кипения, чем исходное сырье, получило название "гидроконверсия".

В отличие от традиционных легких, средних и тяжелых нефтей матричная нефть характеризуется низким содержанием дистиллятных фракций, более высокими содержаниями гетероорганических соединений, характеризующихся повышенным содержанием высокомолекулярных компонентов, состоявших из озокерито- и церезиноподобных образований, твердых парафинов и углеводородов нефтяного ряда (смол, асфальтенов, серы и металлов) (Дмитриевский А.Н., Скибицкая Н.А., Зекель Л.А. и др. // ХТТ.2006. №2. С. 47; Дмитриевский А.Н., Скибицкая Н.А., Зекель Л.А.и др. // ХТТ. 2007. №6. С. 37. 4, 5].

Углеводородный состав исходной матричной нефти содержит смолы общие (спирто-бензольные) - 22,45% масс., асфальтены - 40,64% масс., масла - 36,91% масс., в том числе 14,72% твердых парафинов, в смолах и асфальтенах содержится значительное количество металлов (V, Ni, Fe и др.). Поэтому процессы прямой конверсии такого сырья в дистилляты являются особенно сложными и предполагают снижение содержание гетероорганических компонентов и увеличения соотношения Н/С.

В настоящее время промышленные процессы гидрогенизационной переработки тяжелого сырья осуществляется преимущественно с применением гетерогенных катализаторов с нанесенными на носитель активными каталитическими металлами. Гранулированные или шариковые нанесенные на носитель катализаторы в стационарном или псевдоожиженном слое быстро теряют активность в результате отложения металлов и кокса, поэтому недостаточно эффективны. Для повышения конверсии из сырья необходимо предварительно удалить металлы, например, методом деасфальтизации растворителями или каталитическими адсорбционным методом, что существенно усложняет технологический процесс и снижает выход светлых продуктов.

В последние годы интенсивно разрабатываются новые и совершенствуются существующие процессы гидрогенизационной переработки тяжелых видов сырья с использованием высокодисперсных наноразмерных и ультрадисперсных катализаторов, равномерно распределенных в сырье в форме суспензии каталитических частиц металлов молибдена, никеля, кобальта, вольфрама с размерами 50-5000 нм. Процесс протекает в сларри-реакторах в присутствии катализатора, сформировавшегося из предварительно введенного в сырье предшественника (прекурсора) катализатора или вводимого в виде суспензии в углеводородной среде.

Известны способы гидрогенизационной переработки тяжелого нефтяного сырья, основанные на использовании в качестве прекурсоров водорастворимых или маслорастворимых органических производных молибдена, никеля, кобальта.

Так, в соответствии с РСТ WO 93/03117, C10G 47/06, 1993, предложен процесс гидрогенизационного превращения тяжелых углеводородов до более низкокипящих продуктов при температурах 343-515°С в присутствии водорода (3,5-14 МПа) с добавкой концентрата катализатора. Концентрат катализатора предварительно готовят следующим образом:

а) получают предконцентрат катализатора смешением углеводородного масла, исключая фракции с температурой кипения выше 570°С, с водным раствором соединения металла, из групп II, III, IV, V, VIB, VNB и VIII Периодической системы в количестве, обеспечивающем 0,2-2,0% масс., металла на указанное масло; б) нагреванием предконцентрата без добавления водорода при температурах 275-450°С с использованием элементарной серы как сульфидирующего агента с соотношением (атомным) S:металл от 1:1 до 8:1, получают концентрат катализатора.

Недостаток данного способа заключается в необходимости дополнительной сложной стадии приготовления в особых условиях концентрата катализатора, в использовании относительно дорогой фосформолибденовой кислоты, а также в отсутствии решения вопросов, связанных с регенерацией катализатора.

В способе по патенту RU 2472842 C1, C10G 31/00, C10G 11/02, C10G 35/06, C10G 7/00, опубл. 20.01.2013, в качестве добавки для увеличения глубины переработки углеводородсодержащего сырья в термокаталитических процессах применяют органическую соль, имеющую формулу М(ООС-R)n, или M(SOC-R)n, или M(SSC-R)n, где R обозначает алкил, арил, изоалкил, трет-алкил, алкиларил, возможно включающий гидроксильную, кето-, амино-, карбоксильную, тиокарбаминовую группы, n - 1-3, а М обозначает переходной металл из элементов Периодической системы элементов. Металл из элементов VIII группы Периодической системы элементов выбирают из группы: железо, никель, кобальт, палладий, платина, металл из элементов VII группы выбирают из марганца, металл из элементов VI группы выбирают из группы, включающей хром, молибден, вольфрам. Указанные органические соединения в условиях термического воздействия превращаются в ультрадисперсную суспензию металла, т.е. получают наночастицы металла, который, в свою очередь, катализирует всевозможные процессы конверсии углеводородов: гидрирования, дегидрирования, деструкции. В качестве углеводородсодержащего сырья преимущественно используют тяжелое сырье с плотностью более 0,850 г/см3, например тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны, крекинг - остатки, нефтяные шламы индивидуально или в смеси, а также их смеси с горючими ископаемыми (горючие сланцы, битуминозные пески).

Недостатками процесса являются сложность синтеза и высокая стоимость прекурсоров катализаторов.

Известен способ переработки тяжелых углеводородов, описанный в патенте US №4134825, кл. 208-108, 1979, согласно которому процесс проводят в присутствии маслорастворимых соединений Mo, V или Cr. В качестве последних используются соли смоляной и нафтеновой кислот, содержащие указанные металлы. Маслорастворимое соединение превращается в катализатор путем предварительного нагрева раствора этого соединения в интервале температур 325-415°С и давлении 3,5-35 МПа в присутствии водородосодержащего газа, в котором содержится 1-90% мол. сероводорода. Затем нефтепродукт с содержащимся внутри него твердым коллоидным катализатором вводится в зону гидроконверсии, осуществляемую при температуре 343-538°С и парциальном давлении водорода 3,5-35 МПа.

Недостатком описанного способа является сложность и высокая стоимость катализатора и необходимость предварительной подготовки последнего.

Маслорастворимые прекурсоры распределены в объеме сырья на молекулярном уровне и в условиях гидроконверсии разлагаются с получением суспензий катализаторов с образованием частиц минимальных размеров и максимальной активностью. Однако маслорастворимые прекурсоры дороги и трудно регенерируемы. Поэтому для гидроконверсии ТУС предложено использовать другой метод синтеза ультрадисперсных катализаторов - эмульсионный.

Согласно изобретению по патенту РФ №2400525, C10G 49/04, опубл. 27.09.2010, гидроконверсию углеводородного сырья проводят в присутствии распределенного в сырье молибденсодержащего катализатора, при повышенной температуре и давлении водорода. Сырье предварительно гомогенизируют в смеси с модификатором, в качестве которого используют нефтяные фракции вторичного происхождения, при температуре 80-95°С, вводят молибденсодержащий прекурсор катализатора и поверхностно-активное вещество-лецитин, полученную смесь диспергируют до образования устойчивой эмульсии со средним диаметром капель, равным 45-260 нм, и проводят гидрогенизацию, затем из продуктов реакции выделяют дистиллятные фракции, выкипающие при температуре до 520°С, и остаток, выкипающий при температуре выше 520°С, и, возможно, возвращают остаток в рисайкл в количестве 5-60% масс. на стадию диспергирования.

Недостатками способа являются использование модификатора и эмульгатора, высокий расход модификатора - от 1 до 4% и сравнительно высокое коксообразование - 0,25-1,38%.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является способ по патенту RU 2146274 C1, C10G 47/06, опубл. 10.03.2000, в котором переработку высокомолекулярного углеводородного сырья проводят методом гидрогенизации при равномерном распределении в исходном сырье катализатора, полученного непосредственно в зоне реакции из эмульсии, образованной смешением исходного сырья с водным раствором, содержащим соль молибденовой кислоты, например парамолибдат аммония и аммиака, взятых в массовом соотношении аммиак:молибден, равном 0,15-0,39:1, и имеющей диаметр капель 0,3-5 мкм. Образующиеся органические соединения с температурой кипения ниже 350°С отгоняют. Остаток с температурой кипения выше 350°С сжигают полностью или частично при 800-1000°С и из золошлаковых остатков извлекают катализатор в виде парамолибдата аммония, рециркулируемого в процесс, а также редкие и благородные металлы, содержащиеся в исходном сырье.

Недостатком процесса является сложность состава и операций приготовления эмульсии прекурсора катализатора в сырье и низкий выход дистиллятных фракций с температурой кипения ниже 350°С.

Все указанные способы не применялись для переработки тяжелой части матричной нефти.

Задачами изобретения является разработка эффективного способа переработки тяжелой части матричной нефти без использования модификаторов со стороны, повышение глубины конверсии сырья и снижения выхода кокса (продуктов уплотнения).

Для решения поставленной задачи в предлагаемом способе гидроконверсию тяжелой части матричной нефти осуществляют с получением жидких углеводородных смесей в присутствии распределенного в сырье молибденсодержащего катализатора при повышенной температуре и давлении водорода, при этом в сырье - тяжелую часть матричной нефти с температурой кипения выше 350°С - вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°С и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора катализатора, затем из продуктов реакции выделяют дистиллятные фракции с температурой кипения до 250°С и остаток с температурой выше 250°С и указанный остаток в количестве 20-80% в расчете на содержание фракций выше 520°С в исходной тяжелой части матричной нефти возвращают на стадию получения сырья как рисайкл, остальную часть указанного остатка направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения выше 520°С, направляемого на стадию извлечения металлов, рисайкл при температуре 60-95°С смешивают с указанной тяжелой частью матричной нефти, вводят в нее водный раствор указанного прекурсора и повторяют последующие стадии.

Вязкость смеси сырья с рисайклом при температуре диспергирования в интервале 60-95°С составляет от 0,3 до 3,0 Па⋅с.

В качестве прекурсора катализатора используют парамолибдат аммония при концентрации Мо в водном растворе 20-60 г/л.

Средний диаметр капель указанной эмульсии равен 5-2000 нм.

Часть остатка атмосферно-вакуумной дистилляции с температурой кипения выше 520°С возвращают на стадию подготовки сырья как рисайкл.

Водород до смешения с указанной эмульсией нагревают до 480-500°С, а гидроконверсию осуществляют при соотношении водород:сырье = (500-1500):1 нл/л.

Извлечение металлов из остатка выше 520°С могут осуществлять известным гидрометаллургическим методом с последующей регенерацией, прекурсора катализатора.

Процесс осуществляют следующим образом (Фиг. 1). Свежее сырье, остаток выше 350°С матричной нефти (поток 1) и прекурсор катализатора парамолибдат аммония (поток 2) поступают на блок подготовки сырья 3. В блоке подготовки сырья тяжелую часть матричной нефти с температурой выше 350°С смешивают с рисайклом (потоки 10 и/или 16) при температуре 60-95°С. В смесь вводят водный раствор прекурсора катализатора - парамолибдата аммония (поток 2) и диспергируют до получения стабильной эмульсии со средним диаметром капель 5-2000 нм (поток 4), которую направляют в нагревательно-реакционный блок 5. При запуске процесса, до первой сепарации и получения рисайкла, в качестве сырья используют только тяжелую часть матричной нефти. Сырьевая эмульсия перед нагревателем смешивается с циркулирующим водородсодержащим газом (поток 24).

Концентрация Мо в водном растворе прекурсора составляет 20-60 г/л, количество прекурсора катализатора подается из расчета содержания заданной концентрации Мо в реакционной смеси - 200-4000 ppm в расчете на Мо. Активный катализатор дисульфид молибдена получают из эмульсии, образованной смешением исходного сырья и водного раствора, содержащего парамолибдат аммония, который при высокой температуре в результате термохимических превращений образует дисульфид молибдена. Затем смесь сырья с прекурсором и водородом нагревают до температуры 380-460°С и направляют в реактор, в котором протекает гидроконверсия в восходящем потоке газопродуктовой смеси при соотношении водород:сырье = (500-1500):1 нл/л, температуре 380-460°С в присутствии молибденсодержащего катализатора. Устройства для нагрева водорода и смеси и реактор составляют нагревательно-реакционный блок гидроконверсии 5.

Продукты реакции (поток 6) направляют в блок сепарации 7, где их разделяют на дистиллятные фракции с температурой кипения до 250°С (поток 11) и остаток с температурой кипения выше 250°С (поток 8). Для обеспечения требуемой вязкости при низкой температуре диспергирования фракцию выше 250°С в количестве 20-80% в расчете на содержание фракций выше 520°С в исходной тяжелой части матричной нефти возвращают на смешение с исходной тяжелой частью матричной нефти как рисайкл (поток 10). При этом не требуется привлекать дополнительно другие разбавители со стороны.

Остальную часть остатка с температурой кипения выше 250°С направляют на атмосферную 12 и вакуумную дистилляцию 14 с выделением остатка с температурой кипения выше 520°С (поток 15). Последний целиком направляют на стадию извлечения металлов (поток 17) или отделяют часть этого остатка и также возвращают как рисайкл на стадию получения сырья (поток 16).

Смесь водородсодержащего газа (поток 11) и углеводородных газов (поток 21) направляют на блок очистки 22 от сероводорода и аммиака, очищенный углеводородный газ (поток 23) направляется в топливную сеть, водородсодержащий газ возвращается на рецикл (поток 24). Дистиллятные продукты - бензиновая фракция (поток 29), дизельная фракция (поток 19) и вакуумный газойль (поток 18) выводятся с установки.

Изобретение иллюстрируется нижеследующими примерами.

Примеры.

Пример 1. Исходное сырье - тяжелая часть матричной нефти со следующими свойствами: температура кипения выше 350°С, плотность при 20°С-994 кг/м3, вязкость при 50°С составляет 0,8 Па⋅с, содержание фракций, выкипающих выше 520°С, составляет 39%. При запуске процесса в ней диспергируют водный раствор катализатора, смешивают с водородом, осуществляют гидроконверсию и сепарацию, как указано ниже, получая первый рисайкл.

Рисайкл смешивают с тяжелой частью матричной нефти при температуре 80°С, получая смесь вязкостью 0,4 Па⋅с. Готовят водный раствор парамолибдата аммония концентрацией Мо в водном растворе 40 г/л и диспергируют его в количестве 2% в полученном сырье до получения стабильной эмульсии со средним диаметром капель 5-6000 нм. Затем смесь сырья с прекурсором смешивают водородом в соотношении водород:сырье = 1000:1 нл/л, нагревают до температуры 445°С и направляют в реактор, в котором протекает гидроконверсия.

Продукты реакции направляют в блок сепарации, где их разделяют на дистиллятные фракции с температурой кипения до 250°С и остаток с температурой кипения выше 250°С. Часть фракции выше 250°С в количестве 40% на сырье возвращают как рисайкл, остальную часть направляют на атмосферно-вакуумную дистилляцию (АД и ВД) с выделением остатка с температурой кипения выше 520°С. Остаток направляют на стадию извлечения металлов гидрометаллургическим методом.

Конверсия фракции выше 520°С в продуктах реакции составила 90,1%, выход продуктов уплотнения 0,84% в расчете на сырье.

Пример 2. Осуществляют аналогично примеру 1, но водородсодержащий газ предварительно нагревают до 500°С. Конверсия фракции выше 520°С составила 92,0%, выход продуктов уплотнения 0,73% в расчете на свежее сырье.

Пример 3. Осуществляют аналогично примеру 1, но часть фракции выше 520°С также возвращают как рисайкл в количестве 40% в расчете на свежее сырье. Конверсия фракции выше 520°С составила 93,1%, выход продуктов уплотнения 0,86% в расчете на сырье.

Пример 4. Осуществляют аналогично примеру 3, на рисайкл возвращают 20% остатка выше 250°С и 20% остатка выше 520°С. Конверсия фракции выше 520°С при этом составила 92,8%, выход продуктов уплотнения 0,92%.

Пример 5. Осуществляют аналогично примеру 2, на рисайкл возвращают 80% остатка выше 250°С. Конверсия фракции выше 520°С при этом составила 92,8%, выход продуктов уплотнения 0,92%.

Пример 6. Осуществляют аналогично примеру 2, но концентрация Мо в водном растворе составила 60 г/л. Конверсия фракции выше 520°С составила 92,2%, выход продуктов уплотнения 0,77% в расчете на сырье.

Пример 7. Осуществляют аналогично примеру 1, но концентрация Мо в водном растворе составила 20 г/л. Конверсия фракции выше 520°С составила 89,0%, выход продуктов уплотнения 0,56% в расчете на сырье.

Пример 8. Осуществляют аналогично примеру 7, но концентрация Мо в водном растворе составила 60 г/л. Конверсия фракции выше 520°С составила 89,0%, выход продуктов уплотнения 0,56% в расчете на сырье.

Пример 9. Осуществляют аналогично примеру 2, но отношение водорода к сырью составило 500 нл/л. Конверсия фракции выше 520°С составила 93,6%, выход продуктов уплотнения 1,1% в расчете на сырье.

Пример 10. Осуществляют аналогично примеру 9, но отношение водорода к сырью составило 1500 нл/л. Конверсия фракции выше 520°С составила 92,4%, выход продуктов уплотнения 1,4% в расчете на сырье.

Пример 11. Осуществляют аналогично примеру 9, но температуру в реакторе повысили до 450°С. Конверсия фракции выше 520°С составила 92,4%, выход продуктов уплотнения 1,4% в расчете на сырье.

Результаты экспериментов приведены в таблице 1. Анализ приведенных данных показывает, что тяжелую часть матричной нефти остаток выше 350°С можно перерабатывать методом гидроконверсии. Подача рисайкла способствует росту конверсии остатка выше 520°С. Повышение температуры водорода, подаваемого на смешение с сырьем до 500°С, приводит к повышению конверсии на 2%. Снижение содержания Мо в водном растворе прекурсора приводит к снижению конверсии и снижению выхода продуктов уплотнения. Увеличение содержания Мо в водном растворе прекурсора также сопровождается снижением конверсии и выхода кокса.


Способ гидроконверсии тяжелой части матричной нефти
Способ гидроконверсии тяжелой части матричной нефти
Источник поступления информации: Роспатент

Показаны записи 131-140 из 142.
03.07.2020
№220.018.2def

Ингибированная грунтовка

Изобретение относится к ингибированным грунтовкам для лакокрасочных материалов. Описана ингибированная грунтовка, содержащая ингибирующую композицию для лакокрасочных материалов, включающую бензойную кислоту и октадециламин, взятые в эквимолекулярном соотношении, и грунтовку ПФ-0294 при...
Тип: Изобретение
Номер охранного документа: 0002725249
Дата охранного документа: 30.06.2020
11.07.2020
№220.018.3177

Способ заканчивания строительства эксплуатационной скважины с горизонтальным окончанием ствола

Изобретение относится к нефтяной и газовой промышленности, а именно к разработке нефтяных, газовых и газоконденсатных месторождений. Способ включает спуск и установку в горизонтальное окончание ствола нецементируемого хвостовика-фильтра с разобщающими пакерами, портами многостадийного...
Тип: Изобретение
Номер охранного документа: 0002726096
Дата охранного документа: 09.07.2020
11.07.2020
№220.018.31ab

Способ проведения обработки газовых скважин подземных хранилищ газа

Способ проведения обработки газовых скважин подземных хранилищ газа относится к области газовой промышленности. В заявленном способе на первом этапе в колонну насосно-компрессорных труб закачивают технологическую жидкость, приготовленную на основе водного раствора соляной кислоты, для создания...
Тип: Изобретение
Номер охранного документа: 0002726089
Дата охранного документа: 09.07.2020
31.07.2020
№220.018.39a6

Штамм methylococcus capsulatus вкпм в-13479 - продуцент микробной белковой массы, устойчивый к агрессивной среде

Изобретение относится к микробиологической промышленности и может быть использовано для получения микробной белковой массы. Штамм метанокисляющих бактерий Methylococcus capsulatus ЛБТИ 028 обладает способностью продуцировать микробную белковую массу. Штамм депонирован во Всероссийской...
Тип: Изобретение
Номер охранного документа: 0002728345
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.45c2

Способ оценки выноса пропанта и устройство для сбора пропанта

Использование: для исследования выноса пропанта пластовым флюидом из трещины. Сущность изобретения заключается в том, что в ячейке, заполненной пропантом моделируют термобарические условия трещины и осуществляют несколько циклов прокачки через ячейку жидкости, имитирующей по своему составу...
Тип: Изобретение
Номер охранного документа: 0002790813
Дата охранного документа: 28.02.2023
21.04.2023
№223.018.5029

Способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола

Заявлен способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола. Техническим результатом является повышение эффективности изоляции водопритоков при максимально возможном сохранении фильтрационно-емкостных свойств призабойной зоны эксплуатационного объекта и...
Тип: Изобретение
Номер охранного документа: 0002794105
Дата охранного документа: 11.04.2023
21.04.2023
№223.018.5045

Пористый композитный адсорбент для селективного разделения газов и способ его получения

Группа изобретений относится к технологии получения адсорбентов и может найти применение для сорбции и селективного разделения газовых смесей, в том числе для очистки природного газа от углекислого газа, концентрирования выхлопного или промышленного углекислого газа. Представлен способ...
Тип: Изобретение
Номер охранного документа: 0002794181
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.50b7

Безглинистый поликатионный буровой раствор

Изобретение относится к буровым растворам на водной основе, а именно к поликатионным буровым растворам, и может найти применение при бурении глинистых и продуктивных отложений и капитальном ремонте скважин с низкими пластовыми давлениями на нефтяных и газовых месторождениях. Технический...
Тип: Изобретение
Номер охранного документа: 0002794112
Дата охранного документа: 11.04.2023
22.04.2023
№223.018.50fd

Малоглинистый поликатионный буровой раствор

Изобретение относится к ингибирующим малоглинистым поликатионным буровым растворам на водной основе и может найти применение при бурении глинистых и продуктивных отложений и капитальном ремонте скважин, где существуют жесткие требования к экологии. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002794254
Дата охранного документа: 13.04.2023
22.04.2023
№223.018.510e

Блокирующий состав для ликвидации поглощений в продуктивных пластах при бурении скважин

Изобретение относится к нефтегазовой промышленности, а именно к составам для ликвидации поглощений в продуктивных пластах при бурении скважин. Блокирующий состав для ликвидации поглощений в продуктивных пластах при бурении скважин включает гелеобразователь – гуаровую камедь,...
Тип: Изобретение
Номер охранного документа: 0002794253
Дата охранного документа: 13.04.2023
Показаны записи 91-100 из 100.
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
30.03.2019
№219.016.f92e

Способ регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом...
Тип: Изобретение
Номер охранного документа: 0002683283
Дата охранного документа: 27.03.2019
18.05.2019
№219.017.5b71

Способ получения алкан-ароматической фракции

Изобретение относится к способу получения алкан-ароматической фракции. Способ характеризуется тем, что этанол и/или диэтиловый эфир пропускают через слой предварительно восстановленного катализатора, представляющего собой цеолит ЦВМ, содержащий 0,4-1 мас.% Pd и 0,5-1 мас.% Zn при температуре...
Тип: Изобретение
Номер охранного документа: 0002466976
Дата охранного документа: 20.11.2012
29.05.2019
№219.017.6a10

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Использование: нефтехимия, газохимия, углехимия, производство синтетических моторных топлив и смазочных масел. Описан катализатор для получения алифатических углеводородов из оксида углерода СО и водорода, содержащий наноразмерные частицы железа, промотированные оксидами калия и алюминия,...
Тип: Изобретение
Номер охранного документа: 0002466790
Дата охранного документа: 20.11.2012
10.08.2019
№219.017.be0b

Способ прогнозирования интраоперационных геморрагических осложнений при тяжелой форме пролиферативной диабетической ретинопатии

Изобретение относится к офтальмологии, а именно к способу прогнозирования интраоперационных геморрагических осложнений при тяжелой форме пролиферативной диабетической ретинопатии. Для этого в сыворотке крови определяют содержание эндотелина и при его концентрации 3 и более фмоль/мл прогнозируют...
Тип: Изобретение
Номер охранного документа: 0002696880
Дата охранного документа: 07.08.2019
09.05.2023
№223.018.52ca

Способ переработки сульфидных медных руд с повышенным содержанием мышьяка

Изобретение относится к переработке медных руд, а именно сульфидных с содержанием мышьяка от 0,1 до 2 мас.%. Способ включает стадии: обогащение руды с получением концентрата, обжиг концентрата с получением огарка, его плавку с получением штейна, конвертирование штейна и рафинирование полученной...
Тип: Изобретение
Номер охранного документа: 0002795191
Дата охранного документа: 02.05.2023
+ добавить свой РИД