×
25.08.2017
217.015.b452

СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ТРИАЗАВИРИНА МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий, в лабораториях фармацевтического контроля для определения действующих веществ лекарственных средств. Сущность изобретения основана на способности триазавирина восстанавливаться на различных типах графитовых электродов и заключается в переводе триазавирина из пробы в водный раствор и прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазавирина на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с. Концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазавирина. Изобретение обеспечивает возможность создания чувствительного и экспрессного способа количественного определения триазавирина методом вольтамперометрии в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства. 2 н.п. ф-лы, 1 ил., 3 табл., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к области фармацевтической и аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина (натриевая соль 2-метилтио-6-нитро-1,2,4-триазоло-[5,1-с][1,2,4]триазин-7-она, дигидрата, фиг. 1 - химическая структура). Триазавирин относится к новому классу ненуклеозидных противовирусных этиотропных средств семейства азолоазинов. Препарат зарекомендовал себя как высокоэффективное противогриппозное средство, которое действует на любой стадии инфекционного процесса [Логинова С.Я., Борисевич С.В., Максимов В.А., Бондарев В.П., Котовская С.К., Русинов В.Л., Чарушин В.Н., Чупахин О.Н. Лечебная эффективность нового отечественного препарата «Триазавирин» в отношении возбудителя гриппа А (H5N1) // Антибиотики и химиотерапия. 2011. 56 (1-2): 10-13]. Триазавирин эффективен в отношении инфекций, вызываемых вирусами гриппа типа А и Б, парагриппа и ряда других инфекций. Основным механизмом действия препарата является ингибирование синтеза вирусных РНК и репликации геномных фрагментов. По лечебному эффекту он превосходит многие российские и зарубежные аналоги [Karpenko I., Deev S., Kiselev О., Charushin V., Rusinov V., Ulomsky E., Deeva E., Yanvarev D., Ivanov A., Smirnova O., Kochetkov S., Chupakin O., Kukhanova M. Antiviral Properties, Metabolism and Pharmacokinetics of a Novel Azolo-l,2,4-Triazine-Derived Inhibitor of Influenza A and В Virus Replication // Antimicrobial Agents and Chemotherapy. 2010. 54 (5): 2017-2022]. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах.

Сведения по количественному определению препарата триазавирин методом вольтамперометрии отсутствуют.

Наиболее близким решением является способ количественного определения активного компонента в стандартном образце состава субстанции Триазавирин® с применением высокоэффективной жидкостной хроматографии (ВЭЖХ), взятый за прототип [Тумашов А.А., Артемьев Г.А., Русинов В.Л., Уломский Е.Н., Чупахин О.Н., Чарушин В.Н., Копчук Д.С. Количественное определение противовирусного препарата Триазавирин® с использованием метода ВЭЖХ // Разработка и регистрация лекарственных средств. 2014. 6 (1): 70-73]. Способ основан на сравнении площади пиков компонента в исследуемом и стандартном образцах на спектрах. При этом используют жидкостной аналитический хроматограф Agilent-1100/1200 с дозирующим устройством 10 мкл, автосамплером и спектрофотометрической УФ-детекцией: длина волны 215 нм, щель 8 нм. В качестве подвижной фазы применяют следующую смесь: 10% ацетонитрила - 90% 0,025 М водного раствора ацетата натрия. Лучшие результаты получены на хроматографической колонке Phenomenex Synergimax-RP С12, 250×4,6 мм, размер частиц сорбента 4 мкм. Скорость прохождения раствора через сорбент составляет 0,75 мл/мин, объем вводимой пробы - 10 мкл, время регистрации пиков - 12,5 мин. Общая продолжительность анализа составляет около часа.

Недостатками данного способа являются длительность и трудоемкость анализа, подразумевающая использование большого количества реактивов, включая токсичные органические растворители, высокая стоимость оборудования, расходных материалов и обслуживающего персонала. Указанные особенности существенно ограничивают использование метода ВЭЖХ в экспрессном определении триазавирина. В настоящее время из патентной и научно-технической литературы неизвестны другие инструментальные методы количественного химического анализа триазавирина.

Одним из наиболее перспективных методов определения триазавирина является вольтамперометрический (ВА) и в первую очередь такой его вариант, как прямая квадратно-волновая (КвВ) вольтамперометрия без предварительного накопления определяемого вещества на поверхности индикаторного электрода.

КвВ ВА превосходит другие режимы ВА по скорости, чувствительности и устойчивости к мешающему влиянию растворенного кислорода [Dogan-Topal В., Ozkan S.A., Uslu В. The Analytical Applications of Square Wave Voltammetry on Pharmaceutical Analysis // The Open Chem. Biomed. Methods J. 2010. 3: 56-73]. Высокая чувствительность метода достигается за счет устранения тока заряжения и измерения, в основном, фарадеевской составляющей тока. Величина пика тока возрастает примерно в 4 раза по сравнению с дифференциально-импульсным режимом регистрации, что увеличивает чувствительность метода. Главным преимуществом КвВ ВА является высокая скорость развертки потенциала порядка 0,1-2 В/с. Вольтамперограмма может быть зарегистрирована в течение нескольких секунд, по сравнению с 2-3 минутами в дифференциально-импульсной вольтамперометрии. В результате время анализа в целом существенно сокращается, а проблема блокировки поверхности электрода продуктами реакций практически устраняется. В известных источниках информации отсутствуют сведения по количественному определению триазавирина вольтамперометрическими методами.

Задачей, решаемой данным изобретением, является создание чувствительного и экспрессного способа количественного вольтамперометрического определения триазавирина в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства.

Поставленная задача достигается тем, что способ количественного определения триазавирина включает перевод триазавирина из пробы (субстанции или лекарственной формы) в водный раствор и прямое (без предварительного накопления на электроде) вольтамперометрическое определение в ней триазавирина с использованием толстопленочного углеродсодержащего электрода на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с, концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода путем добавки стандартного раствора триазавирина, а содержание триазавирина рассчитывают по формуле:

, где

Х - содержание триазавирина в субстанции, %;

Н1 - среднее значение высоты пика триазавирина для пробы, мкА;

Н2 - среднее значение высоты пика триазавирина для пробы с добавленным стандартным раствором триазавирина, мкА;

Сд - концентрация стандартного раствора триазавирина, из которого делают добавку в пробу, г/л;

Vд - объем стандартного раствора триазавирина, добавленный в электролизер, мл;

Vал - аликвотная часть испытуемого раствора пробы, помещенная в электролизер, мл;

V0 - объем испытуемого раствора триазавирина, приготовленного из точной навески, мл;

m - масса навески субстанции триазавирина, г.

, где

X - содержание триазавирина в лекарственной форме, мг;

Н1 - среднее значение высоты пика триазавирина для пробы, мкА;

Н2 - среднее значение высоты пика триазавирина для пробы с добавленным стандартным раствором триазавирина, мкА;

Сд - концентрация стандартного раствора триазавирина, из которого делают добавку в пробу, мг/мл;

Vд - объем водного раствора стандартного образца триазавирина, добавленный в электролизер, мл;

Vал - аликвотная часть испытуемого раствора пробы, помещенного в электролизер, мл;

V0 - объем испытуемого раствора триазавирина, приготовленного из точной навески, мл;

m - масса навески содержимого капсул, взятая для анализа, мг;

mк - средняя масса содержимого капсул, мг.

Новым в способе является то, что идентификацию триазавирина проводят по потенциалу и высоте пика его восстановления на поверхности графитовых электродов.

Отличительные признаки, характеризующие изобретение, проявили в заявляемой совокупности новые свойства (простота подготовки пробы, уменьшение стадий, упрощение процедуры и уменьшение длительности анализа при повышении чувствительности в два раза по сравнению с прототипом, исключение токсичных реагентов, дорогостоящих расходных материалов и оборудования), явным образом не вытекающие из уровня техники в данной области и не являющиеся очевидными для специалиста.

Данное изобретение может быть использовано как в лабораториях фармацевтического контроля для определения триазавирина в порошке и его лекарственных формах, так и в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий.

Исходя из вышеизложенного следует считать предлагаемое изобретение соответствующим условиям патентоспособности «Новизна», «Изобретательский уровень», «Промышленная применимость».

Все условия определения триазавирина подобраны экспериментально. В процессе поиска оптимальных условий вольтамперометрического определения триазавирина было изучено влияние ряда факторов (индикаторный электрод, фоновый электролит, частота импульса, амплитуда импульса и скорость КвВ развертки потенциала) на высоту пика триазавирина.

В предлагаемом способе установлена способность триазавирина восстанавливаться на различных типах графитовых электродов. В качестве индикаторных электродов применяли стеклоуглеродный (СУ) и толстопленочный углеродсодержащий электрод (ТУЭ). Использование СУ электрода требует постоянного механического обновления его поверхности перед каждым анализом, что неудобно при проведении серийных анализов и ставит результаты анализа в полную зависимость от квалификации оператора.

Толстопленочные технологии трафаретной печати являются простым, быстрым и очень дешевым методом массового производства одноразовых электрохимических сенсоров с очень высокой степенью точности и с широким спектром конфигураций. Одноразовое использование печатных электродов позволяет предотвратить загрязнение поверхности электрода продуктами реакций, устранить проблему потери чувствительности сенсора в процессе эксплуатации, исключить операцию механической обработки поверхности [Hart J.P., Crew A., Crouch Е., Honeychurch К.С., Pemberton R.M. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses // Anal. Lett. 2004. 37 (5): 789-830]. ТУЭ при определении триазавирина не требуется электрохимическая активация поверхности перед измерением и ее очистка от адсорбированных продуктов реакции перед регистрацией каждой вольтамперограммы путем дополнительной поляризации или продувки инертным газом, что позволяет существенно сократить суммарное время анализа. Использование ТУЭ позволяет измерять в выбранных условиях пик восстановления триазавирина с хорошей воспроизводимостью. Относительное стандартное отклонение (Sr) измеряемого сигнала триазавирина равно 0,2-0,3% при последовательной регистрации 18 катодных пиков в интервале потенциалов от 0,2 до (-0,6) В для концентрации ТЗ на уровне 6,2⋅10-5 ÷ 1⋅10-3 моль/л.

В качестве фона были исследованы водные растворы 1-0,05 М азотной кислоты и 0.1 М раствор нитрата натрия, подкисленный азотной кислотой (рН=2-5). Высота пика триазавирина зависит от кислотности фонового электролита и является достаточно стабильной при рН раствора 1-1,3. В более кислой среде сужается рабочая область потенциалов и возрастает величина остаточного тока, что существенно затрудняет регистрацию пика триазавирина. В растворах с рН>1,3 высота пика триазавирина уменьшается. При значении рН раствора = 5 пик восстановления триазавирина не регистрируется.

Исходя из полученных результатов в качестве фонового электролита был выбран 0,1 М раствор азотной кислоты, так как на его фоне наблюдалась четкая волна восстановления триазавирина, кроме того, данный раствор обеспечивал хорошую электропроводность, широкую рабочую область и необходимую площадь для обработки сигнала, был прост в приготовлении.

Ток пика в квадратно-волновом режиме существенно зависит от таких инструментальных параметров, как частота и амплитуда импульса. Оптимальная амплитуда импульса составила 50 мВ. При значениях амплитуды импульса менее 50 мВ высота пика не достигает максимального значения, что снижает чувствительность определения триазавирина. При увеличении значения амплитуды импульса более 50 мВ высота пика исследуемого вещества уменьшается (табл. 1).

Примечание: частота импульса 50 Гц; шаг развертки потенциала 6 мВ; границы развертки потенциала от 0,2 до (-0,6) В; скорость развертки потенциала 60 мВ/с.

Увеличение высота пика триазавирина от частоты импульса при амплитуде импульса 20 мВ наблюдается в области 10-150 Гц, после чего высота пика уменьшается (табл. 2). При этом в интервале частот свыше 50 Гц базовая линия остаточного тока растет на порядок, что существенно уменьшает соотношение полезный сигнал/остаточный ток, затрудняет регистрацию пика триазавирина и ухудшает воспроизводимость результатов измерения. В предлагаемом способе использовали как наиболее приемлемую частоту 50 Гц.

Примечание: амплитуда импульса 20 мВ; шаг развертки потенциала 6 мВ; границы развертки потенциала от 0,2 до (-0,6) В; скорость развертки потенциала 60 мВ/с

Важным для определения триазавирина методом КвВ ВА является выбор скорости развертки потенциала. Экспериментально установлено, что оптимальной является скорость развертки 160 мВ/с. Изменение скорости развертки потенциала в сторону уменьшения увеличивает время анализа и понижает высоту пика триазавирина. При увеличении скорости развертки наблюдается уменьшение высоты пика и ухудшение его воспроизводимости (табл. 3).

Примечание: амплитуда импульса 50 мВ; частота импульса 50 Гц; границы развертки потенциала от 0,2 до (-0,6) В.

Предложенный способ количественного определения триазавирина отличается простотой и экспрессностью. Время единичного анализа не превышает 2 мин, что в 30 раз меньше, чем при использовании метода ВЭЖХ. Метод не требует больших трудозатрат, исключает использование большого количества реактивов, включая токсичные органические растворители, дорогостоящих электродов и инертных газов и может быть применен в любой химической лаборатории, имеющей вольтамперометрический анализатор как отечественного, так и зарубежного производства.

Метрологические характеристики данного способа: предел обнаружения составляет 1,24⋅10-7 моль/дм3. Область определяемых содержаний ТЗ: от 3,1⋅10-7 до 5,6⋅10-4 моль/дм3. Относительная ошибка определения не превышает 1%.

Способ иллюстрируется следующими примерами.

Пример 1. Определение триазавирина в субстанции методом КвВ вольтамперометрии.

В электролитическую ячейку вольтамперометрического анализатора вносят 10,0 мл раствора фонового электролита. Опускают в раствор электроды: индикаторный - ТУЭ, вспомогательный стеклоуглеродный и электрод сравнения - насыщенный хлоридсеребряный (нас. х.с.э.). Фиксируют вольтамперограмму при квадратно-волновой форме развертки потенциала со скоростью 160 мВ/с в интервале от 0,2 до (-0,6) В. Отсутствие пиков свидетельствует о чистоте фона.

Затем в ячейку с фоновым раствором вносят аликвоту 0,5 мл подготовленного водного раствора анализируемой пробы, перемешивают раствор 5 с и вновь регистрируют вольтамперограмму в тех же условиях. Пик для указанной концентрации вещества регистрируют в диапазоне потенциалов от 0,10 до (-0,40) В (отн. нас. х.с.э.). Содержание триазавирина в субстанции (X, %) оценивают методом добавки стандартного раствора триазавирина, измеряя высоту катодных пиков, по следующей формуле:

, где

H1 - среднее значение высоты пика триазавирина для пробы, мкА;

H2 - среднее значение высоты пика триазавирина для пробы с добавленным стандартным раствором триазавирина, мкА;

Cд - концентрация стандартного раствора триазавирина, из которого делают добавку в пробу, г/л;

Vд - объем стандартного раствора триазавирина, добавленный в электролизер, мл;

Vал - аликвотная часть испытуемого раствора пробы, помещенная в электролизер, мл;

V0 - объем испытуемого раствора триазавирина, приготовленного из точной навески, мл;

m - масса навески субстанции триазавирина, г.

Пример 2. Определение триазавирина в капсулах «Триазавирин® 250 мг» методом КвВ вольтамперометрии.

Около 0,025 г содержимого капсулы (точная навеска) растворяют в воде в мерной колбе вместимостью 25 мл, доводят объем раствора до метки водой и тщательно перемешивают. В электролитическую ячейку вольтамперометрического анализатора вносят 10,0 мл раствора фонового электролита. Опускают в раствор электроды: индикаторный - ТУЭ, вспомогательный стеклоуглеродный и электрод сравнения - насыщенный хлоридсеребряный. Фиксируют вольтамперограмму при квадратно-волновой форме развертки потенциала со скоростью 160 мВ/с в интервале от 0,2 до (-0,6) В. Отсутствие пиков свидетельствует о чистоте фона. Затем в ячейку с фоновым раствором вносят аликвоту 0,5 мл подготовленного водного раствора анализируемой пробы, перемешивают раствор 5 с и вновь регистрируют вольтамперограмму в тех же условиях. Пик для указанной концентрации вещества регистрируют в диапазоне потенциалов от 0,10 до (-0,40) В (отн. нас. х.с.э.). Содержание триазавирина в лекарственной форме (X, мг) оценивают методом добавки стандартного раствора триазавирина, измеряя высоту катодных пиков. Расчет проводят по следующей формуле:

, где

Н1 - среднее значение высоты пика триазавирина для пробы, мкА;

Н2 - среднее значение высоты пика триазавирина для пробы с добавленным стандартным раствором триазавирина, мкА;

Cд - концентрация стандартного раствора триазавирина, из которого делают добавку в пробу, мг/мл;

Vд - объем водного раствора стандартного образца триазавирина, добавленный в электролизер, мл;

Vал - аликвотная часть испытуемого раствора пробы, помещенного в электролизер, мл;

V0 - объем испытуемого раствора триазавирина, приготовленного из точной навески, мл;

m - масса навески содержимого капсул, взятая для анализа, мг;

mк - средняя масса содержимого капсул «Триазавирин® 250 мг», равная 252 мг.


СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ТРИАЗАВИРИНА МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ (ВАРИАНТЫ)
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ТРИАЗАВИРИНА МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ (ВАРИАНТЫ)
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ТРИАЗАВИРИНА МЕТОДОМ ВОЛЬТАМПЕРОМЕТРИИ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 81-90 из 214.
10.05.2018
№218.016.4882

Солнечный опреснитель

Изобретение относится к дистилляции морских, загрязненных или минерализованных вод посредством солнечной энергии. Солнечный опреснитель содержит заполненную жидкостью емкость 1 с оптически прозрачной крышкой 2, теплоприемник 3, выполненный в виде полого металлического стержня, погруженного в...
Тип: Изобретение
Номер охранного документа: 0002651003
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4bff

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям переработки кислых зол ТЭС в заполнитель для бетонов конструкционного назначения. Способ получения безобжигового зольного гравия на основе кислой золы, негашеной извести и щелочного активизатора твердения включает измельчение, дозирование, перемешивание...
Тип: Изобретение
Номер охранного документа: 0002651863
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4f4c

Глушитель звука выстрела, изготовленный по технологии селективного лазерного сплавления металлов

Изобретение относится к области вооружения, а именно к глушителям. Глушитель звука выстрела содержит рабочую часть с перегородками, ячеистое тело и корпус. Корпус выполнен в монолитном исполнении всех своих частей и элементов. Глушитель содержит ребристую структуру заданной шероховатости...
Тип: Изобретение
Номер охранного документа: 0002652767
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.51c9

Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной железобетонной опалубки

Изобретение относится к области контроля качества монолитного бетона в сборно-монолитных строительных конструкциях и может быть использовано в промышленном и гражданском строительстве. Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной...
Тип: Изобретение
Номер охранного документа: 0002653211
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.59b6

Способ получения люминофора на основе губчатого нанопористого оксида алюминия

Изобретение относится к химической промышленности и может быть использовано при изготовлении эффективных люминофоров для элементов нано-оптоэлектроники и источников света в видимом диапазоне. Алюминий анодируют в растворе 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле при постоянном...
Тип: Изобретение
Номер охранного документа: 0002655354
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5bf9

Солнечный опреснитель бассейнового типа

Назначением изобретения является опреснение морских, загрязненных и минерализованных вод в южных и средних широтах. В бассейне, заполненном минерализованной водой, с прозрачной наклонной кровлей, трубой для отвода конденсата, патрубком подачи минерализованной воды выполнен в углублении дна...
Тип: Изобретение
Номер охранного документа: 0002655892
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
20.06.2018
№218.016.642d

Способ изготовления металлического изделия из порошкового материала методом послойного лазерного синтеза с применением деформационной обработки

Изобретение относится к получению металлического изделия послойным лазерным синтезом из порошка. Способ включает послойную укладку порошка на предметном столе принтера и послойное проплавление порошка с обеспечением синтеза металломатричного композиционного материала под воздействием теплового...
Тип: Изобретение
Номер охранного документа: 0002657971
Дата охранного документа: 18.06.2018
Показаны записи 71-78 из 78.
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3380

Струйный аппарат с изменяемым осевым расстоянием между соплом и камерой смешения

Струйный аппарат предназначен для повышения эффективности и надежности функционирования вакуумных насосов. Аппарат включает расположенные последовательно, трубопровод подвода пассивной среды, сопло, приемную камеру, камеру смешения, диффузор и переходный патрубок. Пассивная среда подводится к...
Тип: Изобретение
Номер охранного документа: 0002645635
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.361b

Способ изготовления круглых кристаллов с фаской, устройство и лезвийный инструмент для осуществления способа

Изобретение относится к области изготовления силовых полупроводниковых приборов и может быть использовано для разделения полупроводниковых пластин на круглые кристаллы. Способ включает формирование фаски алмазным лезвийным инструментом и вырезку кристаллов из пластины, которые выполняют одним...
Тип: Изобретение
Номер охранного документа: 0002646301
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
29.05.2019
№219.017.659e

Способ определения патогенных микроорганизмов

Изобретение относится к биотехнологии. Конъюгируют микроорганизм с наночастицами магнетика в анализируемой среде с последующим концентрированием конъюгатов и определением наличия и концентрации микроорганизмов с помощью диагностирующей метки. При этом в качестве магнетика и одновременно...
Тип: Изобретение
Номер охранного документа: 0002397243
Дата охранного документа: 20.08.2010
10.09.2019
№219.017.c98d

Способ определения холестерина

Изобретение относится к области электрохимических методов анализа, в частности к определению содержания свободного холестерина в образце сыворотки или плазмы крови с использованием платинового электрода и растворенного в апротонном растворителе катализатора электрохимического окисления...
Тип: Изобретение
Номер охранного документа: 0002699659
Дата охранного документа: 09.09.2019
22.01.2020
№220.017.f86b

Способ потенциометрического определения антиоксидантной емкости раствора

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости. Изобретение касается способа определения антиоксидантной емкости раствора с использованием потенциометрического метода, в котором...
Тип: Изобретение
Номер охранного документа: 0002711410
Дата охранного документа: 17.01.2020
+ добавить свой РИД