×
25.08.2017
217.015.b446

Результат интеллектуальной деятельности: УСТРОЙСТВО ДИСТАНЦИОННОГО МОНИТОРИНГА СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ СЛОЖНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

№ охранного документа
0002614016
Дата охранного документа
22.03.2017
Аннотация: Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.д.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них. Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов содержит диспетчерский пункт и системы жизнеобеспечения сложных объектов. Диспетчерский пункт (каждая система жизнеобеспечения сложных объектов) содержит источник 1.1 (1.2) аналоговых сообщений, модулятор 2.1 (2.2) с двойным видом модуляции, генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2), фазовый манипулятор 5.1 (5.2), источник 6.1 (6.2) дискретных сообщений, передатчик 7.1 (7.2), первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), приемопередающую антенну 13.1 (13.2), приемник 14.1 (14.2), второй усилитель 5.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2), фазовый детектор 23.1 (23.2), блок 24.1 регистрации и анализа (исполнительный блок 24.2), усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2) и ключ 27.1 (27.2). 3 ил.

Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.п.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них.

Традиционно эксплуатация систем жизнеобеспечения как гражданских, так и военных объектов финансируется по, так называемому, «остаточному принципу». Такой подход привел к тому, что большая часть оборудования систем жизнеобеспечения выработала свой ресурс, и его износ составляет от 50 до 80%. Особенно тяжелая ситуация сложилась в теплоснабжении объектов.

Суровые климатические условия, характерные для большей части территории России, предопределяют теплоснабжение как наиболее значимый как в социальном, так и в техническом отношении сектор экономики.

Около 50% объектов теплоснабжения и тепловых сетей требуют замены, не менее 15% находятся в аварийном состоянии. На каждые 100 км тепловых сетей ежегодно регистрируется в среднем 70 повреждений. Потери тепла в тепловых сетях достигают 30%, капитального ремонта или полной замены требуют 80% общей протяженности сетей.

Основными причинами подобного состояния систем теплоснабжения являются: износ оборудования и тепловых сетей, дефицит финансирования, слабое управление и другие.

Для решения накопившихся в последние десятилетия проблем как в теплоснабжении, так и в других системах жизнеобеспечения сложных объектов, необходимо осуществление комплексных мер, среди которых важное место занимают устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов.

Известны устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов (авт. свид. СССР NN 830.304, 911.464, 930.254, 1.075.426, 1.233.105, 1.276.594, 1.291.984, 1.522.417, 1.626.428, 1.663.784, 1.665.531, 1.780.080, 1.798.738; патенты РФ NN 2.001.531, 2.013.018, 2.019.052, 2.156.551, 2.214.691, 2.215.370, 2.264.034, 2.286.026, 2.313.911, 2.329.608, 2.447.598, 2.504.903; патенты США NN 4.328.581, 5.058.136, 5.077.538, 5.499.760, 5.856.027, 6.128.476; патент Франции N 2.438.877; патенты ЕР NN 0.405.512, 0.486.830, 0.669.740; патенты WO NN 96/10.309, 97/20.438; Тепляков И.М. и др. Радиосистемы передачи информации. М.: Радио и связь, 1982, с. 237, рис. 12.2 и другие).

Из известных устройств наиболее близким к предлагаемому является «Региональная информационная система связи» (патент РФ N 2.264.034, Н04В 7/00, 2004), которая и выбрана в качестве базового объекта. Известная система дуплексной радиосвязи построена с использованием супергетеродинных приемников, в которых одно и тоже значение второй промежуточной частоты Wпp2 может быть получено в результате приема сигналов на четырех частотах: W1, W2, Wз1 и Wз2; т.е.

Wпp2 = W1 - Wr1, Wпp2 = Wr1 - Wз1,

wпp2=Wr2 - W2, Wпp2 = Wз2 - Wr2.

Следовательно, если частоты настройки W1 и W2 принять за основные каналы приема, то наряду с ними будут иметь место зеркальные каналы приема, частоты Wз1 и Wз2 которых отличаются от частот W1 и W2 на 2Wпp2 и расположены симметрично (зеркально) относительно частот Wr1 и Wr2 гетеродинов (рис. 2). Преобразование по зеркальным каналам происходит с тем же коэффициентом преобразования Кпр, что и по основным каналам приема. Поэтому они наиболее существенно влияют на помехоустойчивость и достоверность обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов.

Кроме зеркальных существуют и другие дополнительные (комбинационные) каналы приема.

В общем виде любые комбинационные каналы приема имеют место при выполнении условий:

Wпp2 = (± m Wki ± n Wr1),

Wпp2 = (± m Wkj± n Wr2),

где Wki, Wkj - частоты i-го и j-го комбинационных каналов приема;

m, n, i, j - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первых гармоник частот сигналов с гармониками частот гетеродинов малого порядка (второй, третьей), так как чувствительность супергетеродинных приемников по этим каналам близка к чувствительности основных каналов приема. Так, четырем комбинационным каналам приема при m=1 и n=2 соответствуют частоты:

Wk1 = 2 W r1 - Wпp2, Wk2 = 2Wr1 + Wпp2,

Wk3 = 2 Wr2 - Wпp2, Wk4 = 2 Wr2 + Wnp2.

Наличие ложных сигналов (помех), принимаемых по дополнительным (зеркальным и комбинационным) каналам приема, приводит к снижению помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов.

Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.

Поставленная задача решается тем, что устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов, содержащее, в соответствии с ближайшим аналогом, диспетчерский пункт и системы жизнеобеспечения сложных объектов, при этом диспетчерский пункт и каждая система жизнеобеспечения сложных объектов содержат последовательно включенные источник аналоговых сообщений, амплитудный модулятор, второй вход которого соединен с выходом генератора несущей частоты, фазовый манипулятор, второй вход которого соединен с выходом источника дискретных сообщений, первый смеситель, второй вход которого соединен с выходом первого гетеродина, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, второй усилитель мощности, второй смеситель, второй вход которого соединен с выходом второго гетеродина, и усилитель второй промежуточной частоты, последовательно включенные амплитудный ограничитель, синхронный детектор и блок регистрации и анализа, последовательно подключенные к выходу амплитудного ограничителя перемножитель, второй вход которого соединен с выходом первого гетеродина, полосовой фильтр и фазовый детектор, второй вход которого соединен с выходом второго гетеродина, а выход подключен к второму входу блока регистрации и анализа, между диспетчерским пунктом и каждой системой жизнеобеспечения сложных объектов устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте, при этом на диспетчерском пункте эти сигналы излучаются на частоте

W1 = Wпp1 = Wr2,

где Wпp1 - первая промежуточная частота,

Wr2 - частота второго гетеродина,

а принимаются на частоте

W2 = Wпр3 = Wr1,

где Wпp3 - третья промежуточная частота,

Wr1 - частота первого гетеродина,

а на каждой системе жизнеобеспечения сложных объектов, наоборот, сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте излучаются на частоте W2, а принимаются на частоте W1, частоты Wr1 и Wr2 гетеродинов разнесены на значение второй промежуточной частоты

Wr2 - Wr1 = Wпp2,

на каждой системе жизнеобеспечения сложных объектов блок регистрации и анализа выполнен в виде исполнительного блока, отличается от ближайшего аналога тем, что диспетчерский пункт и каждая система жизнеобеспечения сложных объектов снабжены усилителем суммарной частоты, амплитудным детектором и ключом, причем к выходу второго смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор и ключ, второй вход которого соединен с выходом усилителя второй промежуточной частоты, а выход подключен к входу амплитудного ограничителя и к второму входу синхронного детектора.

Структурная схема устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов представлена на рис. 1. Частотная диаграмма, иллюстрирующая принцип преобразования сигналов, показана на рис. 2. Временные диаграммы, поясняющие принцип работы устройства, изображены на рис. 3.

Диспетчерский пункт (система жизнеобеспечения) содержит последовательно включенные источник 1.1 (1.2) аналоговых сообщений, амплитудный модулятор 4.1 (4.2), второй вход которого соединен с выходом генератора 3.1 (3.2) несущей частоты, фазовый манипулятор 5.1 (5.2), второй вход которого соединен с выходом источника 6.1 (6.2) дискретных сообщений, первый смеситель 9.1 (9.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), вход-выход которого связан с приемопередающей антенной 13.1 (13.2), второй усилитель 15.1 (15.2) мощности, второй смеситель 17.1 (17.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2), ключ 27.1 (27.2), второй вход которого через усилитель 18.1 (18.2) второй промежуточной частоты соединен с выходом второго смесителя 17.1 (17.2), амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), второй вход которого соединен с выходом ключа 27.1 (27.2), и блок 24.1 (исполнительный блок 24.2) регистрации и анализа.

К выходу амплитудного ограничителя 19.1 (19.2) последовательно подключены перемножитель 21.1 (21.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), полосовой фильтр 22.1 (22.2) и фазовый детектор 23.1 (23.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), а выход подключен ко второму входу блока 24.1 (исполнительного блока 24.2) регистрации и анализа.

Последовательно включенные генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2) и фазовый манипулятор 5.1 (5.2) образуют модулятор 2.1 (2.2) с двойным видом модуляции.

Первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты и первый усилитель 11.1 (11.2) мощности образуют передатчик 7.1 (7.2).

Второй усилитель 15.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2), ключ 27.1 (27.2), амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2) и фазовый детектор 23.1 (23.2) образуют приемник 14.1 (14.2).

Между диспетчерским пунктом и каждой системой жизнеобеспечения сложных объектов устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) на одной несущей частоте.

Устройство дистанционного мониторинга систем жизнеобеспечения сложных сигналов работает следующим образом.

Для передачи сообщений и команд с диспетчерского пункта включается генератор 3.1 несущей частоты, который формирует высокочастотное гармоническое колебание (фиг. 3, а)

,

где Uc1, Wc, ϕс1, Tc1 - амплитуда, несущая частота, начальная фаза и длительность высокочастотного гармонического колебания, которое поступает на первый вход амплитудного модулятора 4.1. На второй вход последнего с выхода источника 1.1 аналоговых сообщений подается модулирующая функция m1(t) (фиг. 3, б), содержащая аналоговое сообщение.

На выходе амплитудного модулятора 4.1 образуется амплитудно-модулированный (AM) сигнал (фиг.3, в).

,

который поступает на первый вход фазового манипулятора 5.1, на второй вход которого подается модулирующий код M1 (t) (фиг. 3, г) с выхода источника 6.1 дискретных сообщений. На выходе фазового манипулятора 5.1 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) (фиг. 3, д)

,

где ϕk1(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом М1 (t), причем ϕk1 (t)=coust при Кτэ<t<(k+1)τэ и может изменяться скачком при t=Кτэ, т.е. на границах между элементарными посылками (К-1.2, …, N1):

τэ, N1 - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тс1с1=N1⋅τэ),

который поступает на первый вход первого смесителя 9.1, на второй вход которого подается напряжение первого гетеродина 8.1

.

На выходе смесителя 9.1 образуются напряжения комбинационных частот/ Усилителем 10.1 выделяется напряжение первой промежуточной (суммарной) частоты

,

где ;

Wup1=Wc+Wr1 - первая промежуточная (суммарная) частота;

ϕпр1=ϕс1r1.

Это напряжение после усиления в усилителе 11.1 мощности через дуплексер 12.1 поступает в приемопередающую антенну 13.1, излучается ею в эфир на частоте W1, улавливается приемопередающей антенной 13.2 системы жизнеобеспечения и через дуплексер 12.2 и усилитель 15.2 мощности поступает на первый вход смесителя 17.2. На второй вход смесителя 12.2 подается напряжение Ur1 (t) гетеродина 16.2. На выходе смесителя 17.2 образуются напряжения комбинационных частот. Усилителями 18.2 и 25.2 выделяются напряжение второй промежуточной (разностной) и первой суммарной частот:

,

,

где ; Wup2=W1-Wr1 - вторая промежуточная (разностная) частота;

W∑i=Wr1+W1 - первая суммарная частота;

ϕпр2пр1r1; ϕ∑1пр1r1.

Напряжение u∑1(t) первой суммарной частоты, выделяемое усилителем 25.2, частота настройки Wн1 которого равна W∑1 (Wн1=W∑1), детектируется амплитудным детектором 26.2 и поступает управляющий вход ключа 27.2, открывая его. В исходном состоянии ключ 27.2 всегда закрыт. При этом напряжение uup2 (t) второй промежуточной частоты (фиг. 3, е) с выхода усилится 18.2 второй промежуточной частоты через открытый ключ 27.2 поступает на вход амплитудного ограничителя 19.2 и на первый (информационный) вход синхронного детектора 20.2. На выходе амплитудного ограничителя 19.2 образуется напряжение (фиг. 3, ж)

,

где Uo - порог ограничителя,

которое представляет собой ФМн сигнал и поступает на второй (опорный) вход синхронного детектора 20.2 и на первый вход перемножителя 21.2.

На выходе синхронного детектора 20.2 образуется первое низкочастотное напряжение (фиг. 3, з)

,

где , пропорциональное модулирующей функции m1 (t)

(фиг. 3, б).

Это напряжение поступает на первый вход исполнительного блока 24.2. На второй вход перемножителя 21.2 подается напряжение гетеродина 8.2

.

На выходе перемножителя 21.2 образуется напряжение третьей промежуточной (разностной) частоты (фиг. 3, 11)

,

где ;

Wup3=Wr2-Wup2 - третья промежуточная (разностная) частота;

ϕпр3r2uр2,

которое представляет собой ФМн сигнал на частоте Wr1=Wup3 гетеродина 16.2.

Это напряжение выделяется полосовым фильтром 22.2 и поступает на первый (информационный) вход фазового детектора 23.2, на второй (опорный) вход которого подается напряжение ur1 (t) гетеродина 16.2. На выходе фазового детектора 23.2 образуется второе низкочастотное напряжение (фиг. 3, к)

,

где ,

пропорциональное модулирующему коду М1 (t) (фиг. 3, 2). Это напряжение поступает на второй вход исполнительного блока 24.2.

Описанная выше работа супергетеродинного приемника 14.2 соответствует случаю приема полезных АМ-ФМн сигналов по основному каналу на частоте W1 (фиг. 2).

Если ложный сигнал (помеха) поступает на вход приемника 14.2 по первому зеркальному каналу на частоте Wз1,

,

то на выходе смесителя 17.2 образуются следующие напряжения:

,

,

где ;

Wup2 = Wr1-Wз1 - вторая промежуточная (разностная) частота;

W∑3 = Wr1+Wз1 - третья суммарная частота;

ϕuр4 = ϕr1 - ϕз1; ϕ∑4 = ϕз1 + ϕr1.

Напряжение uпp4(t) попадает в полосу пропускания усилителя 18.2 второй промежуточной частоты. Однако напряжение u∑3(t) не попадает в полосу пропускания усилителя 25.2 первой суммарной частоты (W∑1 - W∑3 = 2 Wпp2). Ключ 27.2 не открывается и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте Wз1, подавляется. По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по другим дополнительным каналам.

При передаче сообщений с системы жизнеобеспечения сложных объектов с помощью генератора 3.2 несущей частоты формируется высокочастотное гармоническое колебание

,

которое поступает на первый вход амплитудного модулятора 4.2. На второй вход амплитудного модулятора 4.2 с выхода источника 1.2 аналоговых сообщений подается модулирующая функция m2(t), содержащая аналоговые сообщения.

На выходе амплитудного модулятора 4.2 образуется AM сигнал

которое поступает на первый вход фазового манипулятора 5.2, на второй вход которого подается модулирующий код M2(t) с выхода источника 6.2 дискретных сообщений. На выходе фазового манипулятора 5.2 формируется сложный АМ-ФМн сигнал

,

который поступает на первый вход смесителя 9.2, на второй вход которого подается напряжение гетеродина 8.2

.

На выходе смесителя 9.2 образуются напряжения комбинационных частот. Усилителем 10.2 выделяется напряжение третьей промежуточной (разностной) частоты

где ;

Wпp3 = Wr2 - Wc - третья промежуточная (разностная) частота;

ϕ6r2 - ϕс2.

Это напряжение после усиления в усилителе 11.2 мощности через дуплексер 12.2 поступает в приемопередающую антенну 13.2, излучается ею в эфир на частоте W2, улавливается приемопередающей антенной 13.1 диспетчерского пункта и через дуплексер 12.1 и усилитель 15.1 мощности поступает на первый вход смесителя 17.1. На второй вход смесителя 17.1 подается напряжение ur2(t) гетеродина 16.1. На выходе смесителя 17.1 образуются напряжения комбинационных частот. Усилителями 18.1 и 25.1 выделяются напряжения второй промежуточной (разностной) и второй суммарной частот:

,

,

где ;

Wпp2 = Wr2 - W2 - вторая промежуточная (разностная) частота;

W∑2 = W2 + Wr2 - вторая суммарная частота;

ϕпр4 = ϕr2 - ϕ6; ϕ∑2 = ϕ6 + ϕr2.

Напряжение u∑2 (t) второй суммарной частоты выделяется усилителем 25.1, частота настройки Wн2 которого выбрана равной W∑2 (Wн2 = W∑2), детектируется амплитудным детектором 26.1 и поступает на управляющий вход ключа 27.1, открывая его. В исходном состоянии ключ 27.1 всегда закрыт. При этом напряжение uup4(t) второй промежуточной частоты с выхода усилителя 18.1 через открытый ключ 27.1 поступает на вход амплитудного ограничителя 19.1 и на первый (информационный) вход синхронного детектора 20.1.

На выходе амплитудного ограничителя 19.1 образуется напряжение

,

где Uo - порог ограничения,

которое поступает на второй (опорный) вход синхронного детектора 20.1 и первый вход перемножителя 21.1.

На выходе синхронного детектора 20.1 образуется низкочастотное напряжение

,

где ;

пропорциональное модулирующей функции m2(t). Это напряжение поступает на первый вход блока 24.1 регистрации и анализа.

На второй вход перемножителя 2.1 подается напряжение ur1(t) гетеродина 8.1, на выходе которого образуется напряжение

,

где ,

которое представляет собой ФМн сигнал на частоте Wr2 гетеродина 16.1. Это напряжение выделяется полосовым фильтром 22.1 и поступает на первый (информационный) вход фазового детектора 23.1, на второй (опорный) вход которого подается напряжение ur2(t) гетеродина 16.1. На выходе фазового детектора 23.1 образуется низкочастотное напряжение

,

где ,

пропорциональное модулирующему коду М2(t). Это напряжение поступает на второй вход блока 24.1 регистрации и анализа.

Описанная выше работа супергетеродинного приемника 14.1 соответствует случаю приема полезных АМ-ФМн сигналов по основному каналу на частоте W2 (фиг.2).

Если ложный сигнал (помеха) поступает на вход приемника 14.1 по второму зеркальному каналу на частоте Wз2

,

то на выходе смесителя 17.1 образуются следующие напряжения:

,

,

где ;

Wпp2 = Wз2 - Wr2 - вторая промежуточная (разностная) частота;

W∑4 = Wr2+Wз2 - четвертая суммарная частота;

Фпр6з2 - ϕr2; ϕ∑4 = ϕr2з2.

Однако напряжение u∑4(t) не попадает в полосу пропускания усилителя 25.1 суммарной частоты (W∑4 - W∑2=2 Wпp2), ключ 27.1 не открывается и ложный сигнал (помеха), принимаемый по второму зеркальному каналу на частоте Wз2, подавляется.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по другим дополнительным каналам.

Сложные сигналы с комбинированной амплитудной модуляцией (АМ-ФМн) на одной несущей частоте обладают высокой энергетической и структурной скрытностью.

Энергетическая скрытность сложных АМ-ФМн сигналов обусловлена их высокой сжимаемостью во времени и по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный АМ-ФМн сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного АМ-ФМн сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных АМ-ФМн сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменений параметров, что затрудняет оптимальную или хотя бы кваиоптимальную обработку сложных АМ-ФМн сигналов априорно неизвестной структуры с целью повышения чувствительности приемника.

Сложные АМ-ФМн сигналы позволяют применять современный вид селекции - структурную селекцию. Это значит, что появляется новая возможность разделять сигналы, действующие в одной и той же полосе частот и в одни и те же промежутки времени.

Таким образом, предлагаемое устройство по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информации между диспетчерским пунктом и системами жизнеобеспечения сложных объектов. Это достигается за счет подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам, методом суммарной частоты. Данный метод отличается высокой эффективностью и простотой технической реализации. При этом на выходе каждого смесителя образуются напряжения промежуточной (разностной) и суммарной частот. Как правило, используется только напряжение промежуточной (разностной) частоты.

В предлагаемом устройстве используется напряжение не только промежуточной (разностной) частоты, но и напряжение суммарных частот. Причем напряжения суммарных частот используются для подавления ложных сигналов (помех), принимаемых по дополнительным каналам.


УСТРОЙСТВО ДИСТАНЦИОННОГО МОНИТОРИНГА СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ СЛОЖНЫХ ОБЪЕКТОВ
УСТРОЙСТВО ДИСТАНЦИОННОГО МОНИТОРИНГА СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ СЛОЖНЫХ ОБЪЕКТОВ
УСТРОЙСТВО ДИСТАНЦИОННОГО МОНИТОРИНГА СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ СЛОЖНЫХ ОБЪЕКТОВ
УСТРОЙСТВО ДИСТАНЦИОННОГО МОНИТОРИНГА СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ СЛОЖНЫХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 129.
26.08.2017
№217.015.db08

Способ раннего обнаружения пожара и устройство для его реализации

Изобретение относится к области пожарной безопасности. Способ раннего обнаружения пожара, основанный на том, что измеряют текущее значение концентраций в воздухе газовых компонентов, выбранных из группы, состоящей из водорода, окиси углерода, двуокиси углерода и ароматических углеводородов,...
Тип: Изобретение
Номер охранного документа: 0002623988
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dd7e

Система радиочастотной идентификации объектов военного назначения

Изобретение относится к области телеметрических систем и может использоваться для радиочастотной идентификации объектов военного назначения. Технический результат изобретения заключается в повышении помехоустойчивости и достоверности радиочастотной идентификации объектов военного назначения...
Тип: Изобретение
Номер охранного документа: 0002624556
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.de2d

Способ определения скорости распространения и направления прихода ионосферного возмущения

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения...
Тип: Изобретение
Номер охранного документа: 0002624634
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de61

Способ исследования внеземных объектов радиоинтерферометрами со сверхдлинными базами

Изобретение относится к астрофизике и астрометрии, а именно к способам исследования внеземных объектов естественного происхождения (звезд, квазаров) и сопровождения искусственных объектов (автоматических межпланетных станций). Достигаемый технический результат - точное и однозначное определение...
Тип: Изобретение
Номер охранного документа: 0002624638
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.deb1

Радиоинтерферометрический способ исследования объектов ближнего и дальнего космоса и система для его реализации

Изобретение относится к космической радиоэлектронике и может быть использовано для исследования объектов ближнего и дальнего космоса (определение местоположения и перемещения в пространстве источников радиоизлучений (ИРИ), размещенных на различных носителях: космических аппаратах, самолетах,...
Тип: Изобретение
Номер охранного документа: 0002624912
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.dfce

Способ контроля и регистрации движения транспортных средств

Предлагаемый способ реализуется радиочастотными метками, устанавливаемыми на транспортных средствах, и аппаратурой, устанавливаемой на контрольных и диспетчерском пунктах. Радиочастотная метка содержит пьезокристалл 5, микрополосковую антенну 6, электроды 7, шины 8 и 9, набор отражателей 10....
Тип: Изобретение
Номер охранного документа: 0002625212
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e3f8

Способ дистанционного обнаружения вещества и устройство для его реализации

Группа изобретений относится к области физических измерений, а именно к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002626313
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.ec6a

Вертолетный радиотехнический комплекс для обнаружения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу

Изобретение относится к области авиации и может быть использовано для поиска, обнаружения и определения местоположения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу. Достигаемый технический результат - повышение оперативности и достоверности обнаружения самолета,...
Тип: Изобретение
Номер охранного документа: 0002627683
Дата охранного документа: 10.08.2017
26.08.2017
№217.015.ede7

Способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его осуществления

Группа изобретений относится к области дистанционного контроля герметичности газонефтесодержащего оборудования и может быть использована для определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом. Сущность: устройство, реализующее способ,...
Тип: Изобретение
Номер охранного документа: 0002628872
Дата охранного документа: 22.08.2017
20.11.2017
№217.015.ef64

Территориальная система контроля транспортировки особо важных и опасных грузов

Предлагаемая система относится к области контроля и тревожной сигнализации и может быть использована для оперативного контроля и управления транспортировкой особо важных и опасных грузов. Технической задачей изобретения является повышение избирательности и помехоустойчивости радиоприемников,...
Тип: Изобретение
Номер охранного документа: 0002628986
Дата охранного документа: 23.08.2017
Показаны записи 101-110 из 178.
26.08.2017
№217.015.ede7

Способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его осуществления

Группа изобретений относится к области дистанционного контроля герметичности газонефтесодержащего оборудования и может быть использована для определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом. Сущность: устройство, реализующее способ,...
Тип: Изобретение
Номер охранного документа: 0002628872
Дата охранного документа: 22.08.2017
20.11.2017
№217.015.ef64

Территориальная система контроля транспортировки особо важных и опасных грузов

Предлагаемая система относится к области контроля и тревожной сигнализации и может быть использована для оперативного контроля и управления транспортировкой особо важных и опасных грузов. Технической задачей изобретения является повышение избирательности и помехоустойчивости радиоприемников,...
Тип: Изобретение
Номер охранного документа: 0002628986
Дата охранного документа: 23.08.2017
20.11.2017
№217.015.efd9

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение предназначено для определения местоположения аварийных радиобуев (АРБ), передающих радиосигналы бедствия на частоте 121,5 МГц и в диапазоне частот 406-406,1 МГц. Достигаемый технической результат изобретения - расширение функциональных возможностей системы путем формирования...
Тип: Изобретение
Номер охранного документа: 0002629000
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f117

Устройство для контроля концентрации опасных газов

Изобретение предназначено для мониторинга окружающей среды, в частности для автоматического непрерывного контроля концентрации горючих газов (метана - СН, кислорода - O и угарного газа - СО) в жилых, коммунальных и производственных помещениях с целью обнаружения превышения допустимых...
Тип: Изобретение
Номер охранного документа: 0002638915
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f5bc

Система определения параметров движения астероида

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр...
Тип: Изобретение
Номер охранного документа: 0002637048
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f687

Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности....
Тип: Изобретение
Номер охранного документа: 0002634453
Дата охранного документа: 30.10.2017
29.12.2017
№217.015.fe59

Способ идентификации субъекта на обслуживаемом объекте и устройство для его осуществления

Предлагаемые способ и устройство относятся к методам защиты объектов от доступа посторонних лиц и регистрации штатного персонала, обслуживающего объекты, а именно к способам идентификации, позволяющим регистрировать субъекты, получившие доступ на объекты, а также регистрировать отпирание замков...
Тип: Изобретение
Номер охранного документа: 0002638504
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0203

Устройство для дистанционного измерения параметров атмосферы

Изобретение относится к области метеорологии и может быть использовано для дистанционного измерения параметров атмосферы. Сущность: устройство состоит из сканирующего устройства и приемоответчика. Сканирующее устройство содержит задающий генератор (1), усилитель (2) мощности, дуплексер (3),...
Тип: Изобретение
Номер охранного документа: 0002629897
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0279

Система для определения местоположения самолетов, потерпевших катастрофу

Система для определения местоположения самолетов, потерпевших катастрофу, содержит «черный ящик» с сигнализацией, помещенный в хвосте самолета, приемник GPS-сигналов, генератор электромагнитных волн и пункт контроля. «Черный ящик» содержит блок генераторов звука и электромагнитных волн, блок...
Тип: Изобретение
Номер охранного документа: 0002630272
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.059b

Диспетчерская система контроля движения городского транспорта

Изобретение относится к области общественного транспорта, в частности к средствам передачи информации для контроля движения городского транспорта, и может найти применение в автоматизированных системах управления транспортом города. Каждый радиокомплекс 1, установленный на транспортных...
Тип: Изобретение
Номер охранного документа: 0002630945
Дата охранного документа: 14.09.2017
+ добавить свой РИД