×
25.08.2017
217.015.b388

Результат интеллектуальной деятельности: РЕАГЕНТ ДЛЯ КОЛИЧЕСТВЕННОГО СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ФЕРРОЦЕНА В БЕНЗИНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии, а именно к аналитическим реагентам, которые позволяют определять содержание ферроцена в бензине. Реагент для количественного спектрофотометрического определения ферроцена в бензине содержит окислитель, воду, катализатор, в качестве которого используют хлороводородную кислоту, и полярный органический растворитель с диэлектрической проницаемостью от 20 до 35 при 25°С при следующем содержании компонентов, мас.%: окислитель 0,016÷2,297; хлороводородная кислота 0,1⋅10÷0,2⋅10; вода 0,096÷1,264; полярный органический растворитель – остальное. Достигается увеличение экспрессности и повышение надежности определения ферроцена в бензине. 2 з.п. ф-лы, 4 пр.

Изобретение относится к аналитической химии, а именно к аналитическим реагентам, которые позволяют определять содержание ферроцена в бензине. Определение ферроцена в бензине является важной практической задачей, т.к. его добавляют для повышения октанового числа бензина. В соответствии с существующей нормативной документацией [1] ферроцен запрещен к применению в качестве антидетонационной присадки в России. Существенным препятствием для использования ферроцена в качестве антидетонационной присадки к моторным топливам является образование в камере сгорания отложений окислов железа, в частности на свечах зажигания и на трущихся поверхностях, что вызывает повышенный износ деталей и приводит к перебоям в работе двигателя. Кроме того, использование ферроцена и его производных ограничено из-за склонности ферроцена к окислению. Этот недостаток не позволяет длительное время хранить присадку или готовую топливную композицию из-за выпадения осадка продуктов окисления, а также из-за повышения склонности бензина к смолообразованию. Поэтому содержание ферроцена в топливе ограничивается величиной 123 мг/дм3.

Для спектрофотометрического определения ферроцена в бензинах в соответствии с действующим стандартом [2] (способ А) используют смешанный водный раствор серной кислоты и пероксида водорода и водный раствор сульфосалициловой кислоты. Анализ включает экстрагирование из бензина и минерализацию ферроцена при длительном нагревании смеси пробы бензина и водного раствора серной кислоты и пероксида водорода с образованием ионов железа (III) в водном растворе. К полученному водному раствору ионов железа (III) добавляют водный раствор сульфосалициловой кислоты и измеряют оптическую плотность раствора образующегося окрашенного комплекса. Недостатками данного способа являются его многостадийность и большие затраты труда и времени. Способ включает длительную лабораторную процедуру минерализации ферроцена при нагревании со смесью серной кислоты и пероксида водорода.

Общей тенденцией в химическом анализе является разработка внелабораторных экспрессных методов его проведения. Внелабораторный анализ позволяет сократить время, т.к. исключается необходимость доставки проб в лабораторию, и повышает его эффективность с точки зрения оперативности получаемой аналитической информации.

Известно индикаторное средство для визуально-колориметрического определения ферроцена в бензине [3], содержащее хлорид иода, хлороводородную кислоту, дистиллированную воду и гексацианоферрат (III) калия. Метод включает отбор пробы, перевод железа в водную фазу и добавление индикатора (гексацианоферрата (III) калия) и последующую оценку наличия железа по изменению окраски водной фазы. Перевод железа в водную фазу осуществляют путем добавления к пробе раствора окислителя - иодида калия, иодата калия, концентрированной хлороводородной кислоты и дистиллированной воды. Изменение окраски водной фазы свидетельствует о наличии ферроцена. Недостатком данного способа являются его многостадийность. Экстракция ионов железа (II) при встряхивании пробы бензина с водой сопровождается образованием эмульсий, что ограничивает возможность последующего количественного фотометрического определения ионов железа (II) в водной фазе без центрифугирования.

Наиболее близким прототипом изобретения является индикаторное средство для определения ферроцена в бензине, содержащее гексацианоферрат (III) калия, дистиллированную воду и дигидроортопериодат натрия [4]. Фотометрический анализ включает окисление ферроцена и образование окрашенного комплекса в водной фазе при встряхивании пробы бензина с водным раствором дигидроортопериодата натрия и гексацианоферрата (III) калия. После разделения фаз отбирают нижнюю водную фазу для последующего измерения ее оптической плотности. Недостатком данного способа является стадия экстракции и разделение фаз. Это существенно усложняет процедуру проведения внелабораторного анализа.

Таким образом, в настоящее время существует задача разработки быстрого, селективного и просто реализуемого метода определения ферроцена в бензине.

Заявленный способ лишен этих недостатков.

Техническим результатом заявленного способа является экспрессность, высокая чувствительность и простота методических процедур. Указанный технический результат достигается тем, что минимизировано число стадий анализа, хромогенная реакция протекает в фазе пробы бензина и возможно прямое спектрофотометрирование.

Методическим решением, наиболее адекватным сформулированной задаче, является применение в качестве комплексного реагента смеси, содержащей окислитель, катализатор, воду и полярный органический растворитель. В качестве окислителя предложено использовать пероксид водорода или бензоилпероксид, которые в присутствии катализатора - хлороводородной кислоты - окисляют ферроцен с образованием интенсивно окрашенного продукта. В качестве растворителя предложено использовать полярные органические растворители с диэлектрической проницаемость от 20 до 35 при 25°С: метанол, или пропан-2-ол, или пропан-2-он, или 1,4-диоксан, которые обеспечивают значительное увеличение скорости протекания реакции окисления и образование устойчивого окрашенного продукта непосредственно в фазе пробы бензина, что существенно упрощает процедуру анализа и сокращает время его проведения.

Экспериментально было установлено, что для быстрого образования стабильного окрашенного продукта реагенты следует брать в следующем соотношении, мас.%:

окислитель 0,016÷2,297
катализатор 0,1⋅10-5÷0,2⋅10-3
вода 0,096÷1,264
полярный органический растворитель остальное

Технический результат заявленного изобретения состоит в увеличении по сравнению с прототипом [4] экспрессности (образование окрашенного продукта и фотометрирование осуществляют непосредственно в пробе бензина, исключена стадия экстракции определяемого вещества в водную фазу) и надежности (не происходит образование эмульсий бензина в водном растворе реагента, т.к. исключена стадия экстракции определяемого вещества в водную фазу) определения ферроцена в бензине, следствием чего является возможность осуществления экспрессного внелабораторного контроля качества бензина по показателю содержания ферроцена.

Заявленный способ апробирован в лабораторных условиях на базе Института химии Санкт-Петербургского государственного университета.

Результаты апробации приведены ниже в виде конкретных примеров.

Пример 1

0,908 г бензоилпероксида и 1 см3 раствора хлороводородной кислоты с концентрацией 4 моль/дм3 растворяли в 100 см3 метанола. Пробу бензина объемом 1 см3 смешивали с 0,5 см3 приготовленного раствора реагента в колориметрической пробирке, которую помещали в портативный фотоэлектроколориметр и через 1,5 мин измеряли оптическую плотность при длине волны 620 нм. Концентрацию ферроцена определяли по градуировочному графику, предварительно построенному по стандартным растворам ферроцена в бензине. Найденное содержание ферроцена составило 129±4 мг/дм3. Правильность результатов подтверждали референтным методом по ГОСТ Р 52530-2006, в соответствии с которым было установлено содержание ферроцена 133±7 мг/дм3. Из полученных результатов видно, что расхождение между установленными концентрациями незначимое, что подтверждает правильность получаемых результатов с применением разработанного реагента.

Пример 2

0,47 см3 30%-ного раствора пероксида водорода и 0,53 см3 раствора хлороводородной кислоты с концентрацией 4 моль/дм3 растворяли в 100 см3 пропан-2-ола. Пробу бензина объемом 1 см3 смешивали с 0,5 см3 приготовленного раствора реагента в колориметрической пробирке, которую помещали в портативный фотоэлектроколориметр и через 1,5 мин измеряли оптическую плотность при длине волны 620 нм. Концентрацию ферроцена определяли по градуировочному графику, предварительно построенному по стандартным растворам ферроцена в бензине. Найденное содержание ферроцена составило 141±5 мг/дм3. Правильность результатов подтверждали референтным методом по ГОСТ Р 52530-2006, в соответствии с которым было установлено содержание ферроцена 148±6 мг/дм3. Из полученных результатов видно, что расхождение между установленными концентрациями незначимое, что подтверждает правильность получаемых результатов с применением разработанного реагента.

Пример 3

0,19 см3 30%-ного раствора пероксида водорода и 0,81 см3 раствора хлороводородной кислоты с концентрацией 4 моль/дм3 растворяли в 100 см3 пропан-2-она. Пробу бензина объемом 1 см3 смешивали с 0,5 см3 приготовленного раствора реагента в колориметрической пробирке, которую помещали в портативный фотоэлектроколориметр и через 1,5 мин измеряли оптическую плотность при длине волны 620 нм. Концентрацию ферроцена определяли по градуировочному графику, предварительно построенному по стандартным растворам ферроцена в бензине. Найденное содержание ферроцена составило 161±6 мг/дм3. Правильность результатов подтверждали референтным методом по ГОСТ Р 52530-2006, в соответствии с которым было установлено содержание ферроцена 164±7 мг/дм3. Из полученных результатов видно, что расхождение между установленными концентрациями незначимое, что подтверждает правильность получаемых результатов с применением разработанного реагента.

Пример 4

0,363 г бензоилпероксида и 1 см3 раствора хлороводородной кислоты с концентрацией 4 моль/дм3 растворяли в 100 см3 1,4-диоксана. Пробу бензина объемом 1 см3 смешивали с 0,5 см3 приготовленного раствора реагента в колориметрической пробирке, которую помещали в портативный фотоэлектроколориметр и через 1,5 мин измеряли оптическую плотность при длине волны 620 нм. Концентрацию ферроцена определяли по градуировочному графику, предварительно построенному по стандартным растворам ферроцена в бензине. Найденное содержание ферроцена составило 120±5 мг/дм3. Правильность результатов подтверждали референтным методом по ГОСТ Р 52530-2006, в соответствии с которым было установлено содержание ферроцена 126±4 мг/дм3. Из полученных результатов видно, что расхождение между установленными концентрациями незначимое, что подтверждает правильность получаемых результатов с применением разработанного реагента.

Приведенные примеры апробации подтверждают технический результат заявленного способа, а именно экспрессность - время проведения анализа не превышает 3 минут (в свою очередь, в известных способах определения ферроцена, описанных в литературе, время анализа составляло от 2 до 6 часов); кроме того, существенным преимуществом заявленного способа является его простота по сравнению с известными источниками информации (в заявленном способе отсутствует стадия экстракции; простое аппаратное исполнение, в т.ч. возможное и в ручном режиме); большим преимуществом заявленного способа является также его высокая воспроизводимость, точность и корректность получаемых данных определения ферроцена. Себестоимость проведения анализа была снижена в 1,5-2 раза.

Использованные источники информации

1. ГОСТ 32513-2013 Топлива моторные. Бензин неэтилированный. Технические условия.

2. ГОСТ Р 52530-2006 Бензины автомобильные. Фотоколориметрический метод определения железа.

3. Патент РФ №2267124. Алаторцев Е.И., Алешина Т.С., Грибановская М.Г. и др. Колориметрический способ определения наличия железа в автомобильном бензине. 2005.

4. Патент РФ №2327157. Островская В.М., Шпигун Л.К., Марталов А.С. и др. Индикаторное средство для определения ферроцена в бензине. 2007 (прототип).

Источник поступления информации: Роспатент

Показаны записи 21-30 из 59.
20.01.2018
№218.016.1a85

Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта iii

Изобретение относится к способам лазерной нейтрализации взрывоопасных объектов и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов. В основу...
Тип: Изобретение
Номер охранного документа: 0002636525
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.32c9

Способ получения металлоорганического каркасного соединения с люминесцентными свойствами

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде...
Тип: Изобретение
Номер охранного документа: 0002645513
Дата охранного документа: 21.02.2018
10.05.2018
№218.016.3888

Геоэлектрический способ определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса

Изобретение относится к области геофизических исследований мерзлых грунтов и может быть использовано для определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса, а также для изучения грунтов криолитозоны. Сущность изобретения заключается в вертикальном...
Тип: Изобретение
Номер охранного документа: 0002646952
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3890

Ультразвуковой способ контроля структуры дисперсных сред

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А, прошедшего...
Тип: Изобретение
Номер охранного документа: 0002646958
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3b97

Способ получения нативного белка пролонгирующего действия в составе полимерных наносфер и резорбируемых микросфер для доставки

Изобретение относится к области медицины, в частности к наномедицине, которая использует биодеградируемые наносферы и микросферы для включения в их состав биологически активных белков для стабилизации их структуры. Cпособ предусматривает предварительное включение гистона животного происхождения...
Тип: Изобретение
Номер охранного документа: 0002647466
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.411b

Устройство для геоэлектрического профилирования почвенно-мерзлотного комплекса

Изобретение относится к области геофизических измерений и может быть использовано для вертикального электрического зондирования почвенно-мерзлотного комплекса, почв, грунтов и иных минеральных образований. Сущность заявленного устройства заключается в том, что устройство для геоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002649030
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.412d

Способ рентгенофазового анализа нанофаз в алюминиевых сплавах

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно...
Тип: Изобретение
Номер охранного документа: 0002649031
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4176

Устройство для регистрации инфракрасных спектров твердых веществ

Изобретение относится к области измерительной техники и касается устройства для регистрации инфракрасных спектров твердых веществ. Устройство содержит корпус в виде цилиндра, имеющего расширение, выполненное в виде кюветы для регистрации спектров и расположенное на платформе. Корпус имеет...
Тип: Изобретение
Номер охранного документа: 0002649029
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.49c2

Геохимический способ поиска месторождений полезных ископаемых

Изобретение относится к области прикладной геохимии и может быть использовано при поисках месторождений полезных ископаемых, при прогнозно-геохимическом картировании закрытых и полузакрытых территорий на основе данных геохимического картирования исследуемых территорий и последующего анализа...
Тип: Изобретение
Номер охранного документа: 0002651353
Дата охранного документа: 19.04.2018
Показаны записи 21-30 из 31.
20.01.2018
№218.016.1a85

Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта iii

Изобретение относится к способам лазерной нейтрализации взрывоопасных объектов и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов. В основу...
Тип: Изобретение
Номер охранного документа: 0002636525
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1f58

Способ получения заготовки из наноструктурного сплава ti49,3ni50,7 с эффектом памяти формы

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы...
Тип: Изобретение
Номер охранного документа: 0002641207
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.32c9

Способ получения металлоорганического каркасного соединения с люминесцентными свойствами

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде...
Тип: Изобретение
Номер охранного документа: 0002645513
Дата охранного документа: 21.02.2018
22.03.2019
№219.016.ec6c

Api для построения сетей программного комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT) и позволяет описывать структуру сети на более высоком уровне, чем стандартные средства предоставляемые в таких системах...
16.04.2019
№219.017.0cb7

Веб-сервис динамического изменения пропускной способности сети комплекса madt

Качество работы виртуальных сетей регулируется утилитами пакета tcconfig. Нами реализована регулировка пропускной способности, задержки, процента потери, повреждения, дупликации и перестановки пакетов в сети в формате веб-сервиса и визуального интерфейса, позволяющего пользователю...
16.04.2019
№219.017.0cb8

Веб сервис визуализации работы распределённого приложения в лаборатории программного комплекса madt

Приложение строит трёхмерный граф на основе конфигурации лаборатории комплекса MADT и визуализирует в нём сообщения, получаемые от узлов сети. В зависимости от содержания сообщения узел графа, соответствующий узлу сети, в реальном времени меняет размер и цвет. Также приложение выводит текстовый...
20.04.2019
№219.017.3606

Api мониторинга узлов комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT). Для осуществления мониторинга узлов программного комплекса MADT разработан интерфейс прикладного программирования...
20.04.2019
№219.017.3607

Программный комплекс моделирование и анализ распределенных технологий (madt)

Программный комплекс MADT позволяет осуществлять моделирование работы сетевых приложений, веб- и микросервисов, распределенных реестров и баз данных, алгоритмов консенсуса, протоколов взаимодействия между ними. Основными компонентами решения являются: - инструменты построения и моделирования сети...
19.06.2019
№219.017.8503

Композиция стандартных образцов для контроля погрешности определения йодного числа светлых нефтепродуктов

Изобретение относится к аналитической химии и может быть использовано в качестве средства метрологического обеспечения методик выполнения измерений при определении йодного числа светлых нефтепродуктов. Стандартный образец для контроля погрешности определения йодного числа светлых нефтепродуктов...
Тип: Изобретение
Номер охранного документа: 0002297628
Дата охранного документа: 20.04.2007
31.10.2019
№219.017.dbee

Распределенный реестр рингчейн (ringchain)

Программа Рингчейн является базовой единицей для построения распределенного реестра на основе сети типа точка-точка с использованием технологии низкой латентности и высоким уровнем безопасности webrtc. На основе программы Рингчейн выстраивается точка-точка сеть, узлы которой являются реестрами,...
+ добавить свой РИД