×
25.08.2017
217.015.b34b

Результат интеллектуальной деятельности: Композиционный материал на основе нитинола

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44, Ni - 36-44 и по меньшей мере легирующий один элемент, выбранный из кобальта не меньше 5, иттрия не меньше 2, ниобия не меньше 5 и бора не меньше 1, остальное. Материал имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы. Получают материал диаметром до 5 мм с высокой прочностью и пластичностью, проявляющий эффект суперэластичности. 12 ил., 4 пр.

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе нитинола.

Одним из перспективных конструкционных материалов являются композиционные материалы на основе нитинола. Сплав сам по себе не обладает высокими показателями прочности, однако за счет ПНП (пластичность, наведенная превращением) эффекта он обладает очень высокими показателями пластичности. Также сплавы на основе нитинола проявляют эффект памяти формы и сверхупругости, что позволяет использовать данные сплавы в специфичных областях, таких как медицина. Создание композиционного материала на основе нитинола с повышенными показателями прочности, достигаемыми за счет армирования матрицы нитинола частицами аморфной фазы, приведет к увеличению уровня прочности материала, при этом пластичность нового материала также будет оставаться на высоком уровне (в сравнении с полностью аморфным материалом). В настоящем патенте предлагается способ получения композиционного материала на основе нитинола с армирующими аморфными частицами.

В патентах ЕР 0526527 А1 (опубл. 17.10.1991), ЕР 0714673 А2 (опубл. 05.06.1996) и WO 9426337 А1 (опубл. 24.11.1994) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti с эффектом памяти формы. В данном документе в состав сплава добавляют большое количество ниобия (больше 15 ат. %). Благодаря добавке ниобия удалось значительно увеличить прочностные свойства сплава, достичь более точного отклика изделия при кручении и одновременно сохранить уникальные эффекты памяти формы и сверхупругости.

В патенте ЕР 1795227 А1 (опубл. 13.06.2007) показаны возможности использования сплавов на основе системы Ni-Ti с эффектом памяти формы для изготовления биосовместимых устройств для имплантации, в том числе с движущимися элементами. Данные устройства должны отвечать ряду требований, таких как: малые размеры, биосовместимость, герметичность (проникновение жидкости в устройство приведет к его поломке и может нанести серьезный вред здоровью), длительный срок службы (не менее 100 лет). Сплавы группы нитинолов подходят под все вышеуказанные требования.

Наиболее близкие способы получения материалов на основе нитинола описаны в нижеследующих документах.

В патенте WO 9527092 А1 (опубл. 12.10.1995) предлагается изготовление сплава с добавкой ниобия, имеющего следующую формулу: Nix-Tiy-Nbz, где х/y=0.8-1.2, z=4-14 атомных процентов. Данный сплав продемонстрировал повышенную прочность по сравнению с двойными сплавами с эффектом сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

В патенте US 2014255246 А1 (опубл. 11.09.2014) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti-Nb с эффектом памяти формы. В отличие от предыдущего патента в этом документе авторы добавляют в состав сплава больше ниобия (больше 15 ат. %). Полученный сплав продемонстрировал хорошие показатели, высокую точность отклика изделия при кручении и одновременно сохранил уникальный эффект памяти формы и сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

Основным отличием данного изобретения является повышенное содержание дополнительных легирующих элементов, способствующих повышению эксплуатационных свойств композиционного материала за счет наличия в структуре аморфной фазы.

Техническим результатом данного изобретения является получение композиционного материала на основе нитинола (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В с повышенным уровнем эксплуатационных свойств и эффектом памяти формы диаметром до 5 мм.

Технический результат достигается следующим образом: композиционный материал на основе нитинола, отличающийся тем, что он содержит медь, цирконий, титан, никель и по меньшей мере один легирующий элемент, выбранный из кобальта, иттрия, ниобия и бора, остальное, при следующем соотношении компонентов, ат. %

Cu - 5-10

Zr - 5-10

Ti - 36-44

Ni - 36-44

по меньшей мере легирующий один элемент, выбранный из кобальта <5, иттрия <2, ниобия <5 и бора <1, остальное,

при этом он имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы.

Сущность изобретения поясняется чертежами, на которых изображено:

На фиг. 1 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 2 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 3 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 4 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 5 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 6 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 7 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 8 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 9 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 10 - Рентгенограмма образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 11 - Микроструктура образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 12 - Кривая сжатия образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1.

Осуществление изобретения

Для решения поставленной задачи предлагается следующая технология: чистые (99,9% чистоты) металлы для сплава состава (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, где ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружаются шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводят в атмосфере аргона при напряжении 200 В. Последовательно переплавляют все шихтовые материалы, переворачивая полученные слитки и проводя повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляем в вакуумной индукционной печи. Навеску располагаем в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляем в индукционной печи. После достижения высокого вакуума осуществляем расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подается аргон и расплав впрыскивается в медную изложницу с диаметром отверстия 1-5 мм.

Исследование структуры композиционных материалов проводят с использованием рентгеноструктурного анализа на образцах толщиной 1 мм, вырезанных из поперечного сечения отливок, а также методом сканирующей электронной микроскопии. Оценку механических свойств на сжатие проводят на цилиндрических образцах с соотношением высоты к диаметру 1:1.

Пример 1

Сплав №1 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 39

- Cu 9

- Zr 10

Для приготовления сплава использовались шихтовые материалы чистых металлов (99,99 масс. % чистоты). Плавление шихтовых материалов проводили в атмосфере аргона в дуговой печи при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 1 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 2).

Механические испытания (фиг. 3) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2150 МПа, а пластичность составила 18,3%.

Пример 2

Сплав №2 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 38

- Cu 7

- Zr 10

- Со 2

- Y 0.5

- В 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 4 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 5).

Механические испытания (фиг. 6) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2140 МПа, а пластичность составила 12,4%.

Пример 3

Сплав №3 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40

- Ni 39.5

- Cu 8

- Zr 10

- Со 2

- Y 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 7 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 8).

Механические испытания (фиг. 9) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2620 МПа, а пластичность составила 25%.

Пример 4

Сплав №4 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40.5

- Ni 40

- Cu 8

- Zr 8

- Со 2

- Y 0.5

- Nb 1

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу.

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 10 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 11).

Механические испытания (фиг. 12) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2430 МПа, а пластичность составила 23,1%.


Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Источник поступления информации: Роспатент

Показаны записи 61-70 из 323.
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2fd

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b394

Способ дефосфорации железных руд и концентратов

Изобретение относится к черной металлургии и может быть использовано в процессах получения чугуна из окисленного железосодержащего сырья. В способе осуществляют расплавление в печи железорудного концентрата и дефосфорацию оксидного железосодержащего расплава. При этом доводят температуру...
Тип: Изобретение
Номер охранного документа: 0002613833
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b435

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Мокрое измельчение стехиометрической смеси карбоната бария и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при следующем...
Тип: Изобретение
Номер охранного документа: 0002614005
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b43e

Способ получения нанопористого нитрида бора

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода. Сущность изобретения состоит в том, что готовят реакционную смесь из борной...
Тип: Изобретение
Номер охранного документа: 0002614007
Дата охранного документа: 22.03.2017
Показаны записи 61-70 из 183.
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2fd

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b394

Способ дефосфорации железных руд и концентратов

Изобретение относится к черной металлургии и может быть использовано в процессах получения чугуна из окисленного железосодержащего сырья. В способе осуществляют расплавление в печи железорудного концентрата и дефосфорацию оксидного железосодержащего расплава. При этом доводят температуру...
Тип: Изобретение
Номер охранного документа: 0002613833
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b435

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Мокрое измельчение стехиометрической смеси карбоната бария и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при следующем...
Тип: Изобретение
Номер охранного документа: 0002614005
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b43e

Способ получения нанопористого нитрида бора

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода. Сущность изобретения состоит в том, что готовят реакционную смесь из борной...
Тип: Изобретение
Номер охранного документа: 0002614007
Дата охранного документа: 22.03.2017
+ добавить свой РИД