×
25.08.2017
217.015.b2e9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА ИЗ ХРОМСОДЕРЖАЩИХ БОКСИТОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Способ получения глинозема из хромсодержащих бокситов включает мокрое спекание шихты, выщелачивание спека промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия. Боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1. Получают пульпу с частицами крупностью менее 0,05 мм. Пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов. Магнитный продукт с содержанием оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия. Немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты. После этого шихту спекают. Полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия. Гидроксид алюминия фильтруют, промывают и направляют на кальцинацию. Изобретение позволяет повысить комплексность переработки низкокачественных бокситов с получением глинозема и хромата натрия, снизить экологическую нагрузку на окружающую среду за счет извлечения части соединений хрома. 6 ил., 3 пр.

Изобретение относится к производству глинозема из бокситов.

Известен способ получения глинозема по способу Байера (Лайнер А.И. Производство глинозема / А.И.Лайнер, Еремин Н.И., Лайнер Ю.А., Певзнер И.З. - М.: "Металлургия". - 1978. - С. 61-183), основанный на взаимодействии бокситовых руд со щелочными растворами и последующим разложением алюминатных растворов с выделением из них гидроксида алюминия согласно реакциям:

Маточный раствор от разложения алюминатных растворов при упаривании его до 40-44° (уд. Вес 1,20-1,22), подобно растворам едкого натра, растворяет глинозем из боксита за 1,5 часа при перемешивании и под давлением в 3-4 ат. При этом хромсодержащие минералы, представленные трехвалентным хромом, переходят в красный шлам и, являясь водонерастворимыми формами, не оказывают вредного влияния на окружающую среду.

Недостатком этого способа является пригодность его только для переработки высококачественных бокситов с высоким кремниевым модулем (весовое отношение Al2O3 к SiO2) более 7÷8.

Известен способ получения глинозема по последовательному варианту комбинированного способа Байер-спекание (Лайнер А.И. Производство глинозема / А.И. Лайнер, Еремин Н.И., Лайнер Ю.А., Певзнер И.З. - М: "Металлургия". - 1978. - С. 268-271), основанный на том, что шлам от автоклавной варки, богатый по содержанию Al2O3 и Na2O, спекают в смеси с известняком и содой. Обескремненный алюминатный раствор от выщелачивания спека смешивают с разбавленным раствором от автоклавной варки для совместного выкручивания, рыжую соду от упарки маточного раствора смешивают со шламом перед спеканием.

Недостатками данного способа являются большие капитальные затраты на 1 т глинозема, состав красного шлама иногда затрудняет спекание приготовленной из него шихты, при переработке бокситов с большим содержанием хрома спеканием происходит окисление хрома в процессе спекания и загрязнение его водорастворимыми соединениями технологических растворов, воздуха и красного шлама.

Известен способ переработки высококремнистых бокситов (Изучение вещественного состава и обогатимости бокситов Северо-Онежского и Средне-Тиманского месторождений. / Алгебраистова Н.К., Филенкова Н.В., Маркова С.А., Гроо Е.А., Кондратьева А.А., Свиридов Л.И., Шепелев И.И. // Сборник докладов II Международного Конгресса «Цветные металлы - 2010». - г. Красноярск. - 2-4 сентября, 2010. - с. 43-45), основанный на извлечении из них диоксида кремния и алюминия с использованием микробиологического выщелачивания и последующим селективным выделением глинозема из жидкой фазы.

Недостатки данного способа заключаются в длительности процесса и необходимости использования крупногабаритного оборудования.

Известен способ получения глинозема путем совместной переработки бокситов с нефелиновым сырьем методом спекания (Виноградов С.А. Технология совместной переработки нефелинов и бокситов // Записки Горного института. - СПб.: СПГТИ, 2007, Т. 170, с. 153-155), основанный на том, что добавка к нефелиновому сырью 14% боксита позволяет повысить содержание оксида алюминия в спеке до существующего в настоящее время уровня (~15%), тем самым позволяя достичь извлечения оксида алюминия и щелочей около 90%.

Недостатком данного способа является то, что наличие стадии спекания двухкомпонентной шихты неизбежно приведет к образованию водорастворимых хроматов натрия. Кроме того, доля вовлекаемых в переработку бокситов по данному способу невелика.

Известен способ получения глинозема по способу спекания, (Лайнер А.И. Производство глинозема / А.И. Лайнер., Еремин Н.И., Лайнер Ю.А., Певзнер И.З. – М.: "Металлургия". - 1978. - С. 184-263), принятый за прототип, согласно которому бокситы подвергают дроблению и последующему мокрому измельчению совместно с известняком на упаренном оборотном содовом растворе. В пульпу дополнительно дозируется сода и после корректировки готовая пульпа подвергается спеканию. Спек выщелачивается водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия.

Недостатком этого способа является то, что при переработке хромсодержащих бокситов спеканием происходит окисление хрома в процессе спекания и загрязнение его водорастворимыми соединениями технологических растворов, воздуха и красного шлама. Это вполне закономерно, так как и при переработке хромита реализуется окислительный обжиг при 1100-1200°С с содой и доломитом. Соединения Cr(VI) обладают местным и общетоксичным действием, вызывая поражения органов дыхания, кожного покрова, слизистых оболочек, желудочно-кишечного тракта.

Техническим результатом изобретения является частичное удаление хромсодержащих минералов из боксита с последующей возможной их переработкой на хромат натрия.

Технический результат достигается тем, что боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1 с получением пульпы с частицами крупностью менее 0,05 мм, затем пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, далее магнитный продукт с содержанием в нем оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия, а немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты, после чего шихту спекают, полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, гидроксид алюминия фильтруют, промывают и направляют на кальцинацию.

Способ поясняется следующими фигурами:

фиг. 1 - схема получения глинозема из хромсодержащих бокситов;

фиг. 2 - вещественный состав хромсодержащих бокситов Иксинского месторождения;

фиг. 3 - распределение оксида хрома(III) по минералам бокситов;

фиг. 4 - результаты магнитной сепарации хромсодержащих бокситов,

фиг. 5 - зависимость извлечения оксида хрома(III) в магнитный продукт от его выхода и крупности фракции;

фиг. 6 - показатели критерия эффективности магнитной сепарации в зависимости от крупности фракции;

Способ осуществляется следующим образом.

Исходный хромсодержащий боксит подвергают дроблению в щековой дробилке. Далее дробленый боксит подают совместно с оборотным содовым раствором от карбонизации в шаровую мельницу мокрого помола при объемном отношении жидкого вещества к твердому (Ж:Т), равному 3:1, с целью получения фракции -0,05 мм. Далее пульпу подвергают магнитной сепарации в полиградиентном магнитном сепараторе при силе тока в катушке магнитного сепаратора от 6 до 12 А. Магнитный продукт, содержащий оксиды хрома(III) и железа(III), перерабатывается на хромат натрия по известной технологии. При выходе магнитного продукта 6,1-6,2% извлечение оксида хрома(III) в него составляет 25÷32,0%, а снижение содержания оксида хрома(III) в немагнитном продукте составило 23÷28%. Немагнитный продукт совместно с измельченным известняком, свежей содой, белым шламом от обескремнивания алюминатных растворов и карбонатным шламом, полученным при каустификации содовых растворов, подается в большие емкости с воздушным перемешиванием, в которых осуществляется корректировка шихты. В шихте должны быть выдержаны следующие молекулярные соотношения:

Na2O:(Al2O3+Fe2O3)=1,00±0,05 и СаО:SiO2=2,00±0,05.

После корректировки пульпа через питающие бассейны откачивается на вращающиеся барабанные печи спекания диаметром от 3 до 5 м и длиной от 50 до 100 м. Так как в бокситовой шихте содержится много свободной соды, приводящей к окомкованию шихты при ее сушке, поэтому бокситосодоизвестняковая пульпа подается в трубчатую вращающуюся печь распылом через форсунки. При мокром спекании распыленные капельки суспензии подсушиваются в газовом потоке, образующиеся сухие гранулы падают на слой сухого материала и далее перемещаются при вращении печи в зону более высоких температур. Температура образования спека 1150-1250°С. Спек охлаждается во вращающихся барабанных холодильниках от 1000-1100°С до ~100°С. После охлаждения спек подают на выщелачивание, а отходящие газы из печей спекания очищают от пыли в системе последовательно расположенных пылевых камер, циклонов и электрофильтров. Шлам после выщелачивания бокситовых спеков отмывают горячей водой, которую затем используют для выщелачивания спеков, после чего шлам направляют в отвал. Для обеспечения стойкости растворов в процесс вводят едкую щелочь в составе оборотного содово-щелочного раствора. Алюминатный раствор направляют на обескремнивание. Обескремнивание проводят в две стадии. На первой стадии раствор выдерживают в автоклавах при 150-170°С в течение 1,5-2 ч, в результате чего кремнезем выпадает в осадок в виде гидроалюмосиликата натрия состава Na2O⋅Al2O3⋅l,7SiO2⋅2H2O, в растворе остается 0,4-0,5 г/л SiO2. Сгущенный и отфильтрованный шлам от первой стадии обескремнивания отправляют в голову процесса для приготовление шихты. Вторую стадию обескремнивания проводят в мешалках с добавкой известкового молока при температуре 90-95°С в течение 1,5-2 ч. Известковое молоко дозируют в количестве 3-5 г/л СаОакт, что соответствует отношению по массе СаО:SiO2=20÷40. В результате происходящих взаимодействий образуется малорастворимый гидроалюмосиликат кальция (гидрогранат) состава 3CaO⋅Al2O3⋅mSiO2⋅(6-2m)H2O, где m=0,1÷0,4. После второй стадии обескремнивания раствор отделяют от шлама, фильтруют и направляют на разложение. Сгущенный и отфильтрованный шлам от второй стадии обескремнивания подвергают содовой обработке для регенерации глинозема и получения щелочного раствора, используемого для выщелачивания спека. Содовую обработку шлама проводят в две стадии. Около 50% карбонатного шлама после первой обработки используют вместо извести на второй стадии обескремнивания, остальной шлам после второй содовой обработки направляют на шихтовку и спекание. Содово-щелочной раствор с каустическим модулем 2,5-3,0, полученный при содовой обработке, используют при выщелачивании спеков как источник едкой щелочи. Шлам после второй стадии обескремнивания может быть использован как затравка на первой и второй стадиях обескремнивания, после чего возвращен на приготовление шихты. После глубокого обескремнивания алюминатный раствор подвергается карбонизации до остаточного содержания в нем ~5 г/л Al2O3. Карбонизацию проводят в присутствии затравочного гидроксида алюминия, количество которого примерно равно содержанию гидроксида алюминия в алюминатном растворе. Пульпу после карбонизации разделяют на гидроциклонах. Нижний продукт гидроциклонов, содержащий, в основном, крупную фракцию гидроксида алюминия, фильтруют и промывают. Промытый и отфильтрованный гидроксид алюминия направляют па прокалку (кальцинацию) для получения продукционного глинозема. Верхний слив сгущают, сгущенную пульпу, содержащую мелкую фракцию гидроксида алюминия, используют в качестве затравки при карбонизации. Маточные растворы после карбонизации являются оборотными. Их подвергают контрольной фильтрации и выпариванию, после чего используют для магнитной сепарации исходного боксита. Часть маточного раствора используется для содовой обработки шламов после второй стадии обескремнивания. Схема получения глинозема из хромсодержащих бокситов приведена на фиг. 1.

Способ поясняется следующими примерами.

Пример 1.

Переработке подвергались высококремнистые хромсодержащие бемит-каолинитовые бокситы Иксинского месторождения (фиг. 2). Кристаллооптический анализ бокситов дал следующий минералогический состав в порядке убывания: бемит, каолинит, гиббсит, цеолит, кварц, слюда, кальцит, полевой шпат, турмалин, органические остатки. Из рудных непрозрачных минералов имеются минералы группы хромшпинелидов и железосодержащие минералы.

Рентгенофазовый анализ установил следующий минералогический состав: бемит, гиббсит, каолинит, гидрослюда, хлорит или монтмориллонит, анатаз, сильно дисперсный хромит. Минералы перечислены в порядке уменьшения их содержания. Распределение оксида хрома(III) по минералам было установлено при помощи микрозондового анализа (фиг. 3). 48% Cr2O3 приходится на долю алюмохромита. В состав каолинита изоморфно входит около 10% Cr2O3, с бемитом и гиббситом связано до 25%, в минералах железа сконцентрировано порядка 15÷17%. Помимо алюмохромита в исходном боксите были найдены хромпикотит, а также хромсодержащие алюмогетит и магнетит. Хромшпинелиды в основной массе немагнитны или иногда слабомагнитны. Значительная степень магнитности наблюдается у разновидностей, обогащенных в значительной мере Fe2O3. Магнетит, который в нашем случае содержит Cr2O3, в свою очередь, сильномагнитен.

Исходный хромсодержащий боксит подвергали дроблению в щековой дробилке. Гранулометрический состав дробленого материала:

Далее дробленый боксит вместе с оборотным содовым раствором измельчили в шаровой мельнице до крупности -0,05 мм при объемном отношении Ж:Т=3:1, пульпу пропустили через рабочую ячейку полиградиентного магнитного сепаратора (сила тока в катушках магнитного сепаратора 6 А). Магнитный продукт промывали водой и после размагничивания смывали. Пульпу полученных продуктов фильтровали, сушили, определяли ее выход и далее подвергали химическому анализу.

Способ позволил при выходе магнитного продукта в количестве 6,1% извлечь в него 25,41% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 23,33% (фиг. 4). В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем спеканием. Магнитный продукт может быть переработан на целевой хромсодержащий продукт Na2CrO4.

Экспериментально установлено, что эффективность магнитной сепарации снижается при крупности частиц пульпы более 0,05 мм (фиг. 5). Магнитная сепарация фракции с частицами крупностью -2 мм не позволяет достичь удовлетворительного извлечения Cr2O3 и Fe2O3 в магнитный продут даже при повышении тока сепаратора, что указывает на недостаточное раскрытие минералов при данной крупности. Повышению эффективности магнитной сепарации способствует более тонкое измельчение.

Критерием эффективности магнитной сепарации служит отношение извлечения оксида хрома(III) в магнитный продукт (ε) к выходу магнитного продукта (γ), численно равное тангенсу угла наклона аппроксимирующей зависимости к линии оси абсцисс или сам угол (фиг. 6).

Пример 2.

Хромсодержащие бокситы, химико-минералогический состав которых представлен на фиг. 2 и 3, предварительно измельчили до крупности менее 0,05 мм вместе с упаренным оборотным содовом раствором при объемном отношении Ж:Т=3:1, пульпу подвергали магнитной сепарации при силе тока в катушках магнитного сепаратора 9 А. В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем спеканием. Магнитный продукт может быть переработан по известной технологии на целевой хромсодержащий продукт Na2CrO4.

При данной силе тока способ позволяет извлечь в магнитный продукт 25,25% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 23,33%, выход магнитного продукта составляет 6,16% (фиг. 4).

Пример 3.

Хромсодержащие бокситы (фиг. 2 и 3), измельченные на упаренном оборотном содовом растворе (объемное отношение Ж:Т=3:1) до крупности менее 0,05 мм, подвергаются магнитной сепарации (сила тока в катушках магнитного сепаратора 12 А). В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем способом спекания. Магнитный продукт может быть переработан по известной технологии на целевой хромсодержащий продукт Na2CrO4.

При силе тока в катушках магнитного сепаратора 12 А способ позволяет при выходе магнитного продукта в количестве 6,2% извлечь в него 32,03% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 28,33% (фиг. 4).

Преимущество данного способа по сравнению со способом, принятым за прототип, состоит в том, что предварительная магнитная сепарация измельченного на упаренном оборотном содовом растворе хромсодержащего боксита позволяет снизить экологическую нагрузку на окружающую среду за счет извлечения части соединений хрома, а также повысить комплексность процесса переработки низкокачественных бокситов за счет переработки соединений хрома на целевой продукт - хромат натрия.

Способ получения глинозема из хромсодержащих бокситов, включающий мокрое спекание шихты, выщелачивание спека промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, отличающийся тем, что боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1 с получением пульпы с частицами крупностью менее 0,05 мм, затем пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, далее магнитный продукт с содержанием в нем оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия, а немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты, после чего шихту спекают, полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, гидроксид алюминия фильтруют, промывают и направляют на кальцинацию.
Источник поступления информации: Роспатент

Показаны записи 191-200 из 209.
18.07.2020
№220.018.3438

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002726754
Дата охранного документа: 15.07.2020
21.07.2020
№220.018.350a

Способ снижения расхода топлива дизель-генераторными установками в гибридной электростанции с возобновляемыми источниками энергии

Изобретение относится к области управления режимами работы автономных гибридных комплексов с комбинированной генерацией электроэнергии, включающих дизельную электростанцию с одной или несколькими ДГУ, а также один или несколько видов ВИЭ. Способ заключается в том, что на основе получаемых из...
Тип: Изобретение
Номер охранного документа: 0002726943
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.374a

Подводная технологическая платформа

Изобретение относится к транспортировке углеводородного и другого сырья по проложенным по морскому дну трубопроводам большой протяженности. Предложена подводная технологическая платформа, которая состоит из каркаса, манифольда, блока управления и защиты устья скважины, тройника, устья...
Тип: Изобретение
Номер охранного документа: 0002727206
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.375e

Устройство диагностики и оценки остаточного ресурса электродвигателей

Изобретение относится к области диагностики электрооборудования и позволяет производить оценку технического состояния и остаточного ресурса электродвигателя и сопряженного с ним механического оборудования путем регистрации мгновенных значений вибраций, шума, температуры посредством датчиков с...
Тип: Изобретение
Номер охранного документа: 0002727386
Дата охранного документа: 21.07.2020
29.07.2020
№220.018.38b8

Способ бессеточной модуляции тока в неустойчивом режиме горения разряда

Изобретение относится к плазменной энергетике, к области модуляции тока и может быть использовано при разработке радиационно-стойкой высокотемпературной плазменной электроники для космических и наземных ядерных энергетических установок, систем экологической противорадиационной защиты, при...
Тип: Изобретение
Номер охранного документа: 0002727927
Дата охранного документа: 27.07.2020
31.07.2020
№220.018.3acd

Противоморозная добавка для бетонной смеси

Изобретение относится к области строительных материалов и может быть использовано при изготовлении бетонов и строительных растворов, твердеющих при отрицательных температурах. Противоморозная добавка для бетонной смеси включает, мас.%: кремнегель 79,43–87,49, суперпластификатор на...
Тип: Изобретение
Номер охранного документа: 0002728023
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3cd7

Устройство для измерения удельного сопротивления полупроводниковых режущих керамических пластин

Изобретение относится к области контрольно-измерительной техники для определения удельного электрического сопротивления полупроводниковых сменных многогранных режущих пластин из оксидно-карбидной керамики для неразрушающего определения и контроля микроструктурных параметров материала, которые...
Тип: Изобретение
Номер охранного документа: 0002729169
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.4448

Способ переработки калийных сильвинитовых руд

Предложенное изобретение относится к области обогащения калийных сильвинитовых руд, содержащих нерастворимые в воде фракции, представленные глинистыми разностями. Способ переработки калийных сильвинитовых руд включает рудоподготовку, термическую обработку и электрическую сепарацию руды....
Тип: Изобретение
Номер охранного документа: 0002738400
Дата охранного документа: 11.12.2020
12.04.2023
№223.018.45a4

Устройство подавления высших гармоник и коррекции коэффициента мощности сети

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам компенсации высших гармоник в электрических сетях и коррекции коэффициента мощности. Устройство может быть использовано в системах электроснабжения промышленных предприятий с большим количеством нелинейной...
Тип: Изобретение
Номер охранного документа: 0002793449
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4604

Опора надземного магистрального трубопровода

Изобретение относится к строительству и эксплуатации магистральных трубопроводов, в частности к опорам для трубопроводов в условиях, осложненных сезонно-вспучиваемыми грунтами. Опора надземного магистрального трубопровода позволяет уменьшить напряженно-деформированное состояние трубопровода за...
Тип: Изобретение
Номер охранного документа: 0002781733
Дата охранного документа: 17.10.2022
Показаны записи 81-82 из 82.
24.07.2020
№220.018.36da

Способ получения глинозема

Изобретение относится к области цветной металлургии, в частности к производству глинозема из бокситов, и может быть использовано при химическом обогащении бокситов с целью их использования для переработки на глинозем по способу Байера. Способ получения глинозема включает дробление, обжиг,...
Тип: Изобретение
Номер охранного документа: 0002727389
Дата охранного документа: 21.07.2020
23.05.2023
№223.018.6dbc

Способ получения аморфного диоксида кремния из отходов переработки кремнефтористоводородной кислоты и производства фторида алюминия

Изобретение относится к способу получения аморфного диоксида кремния из отходов переработки кремнефтористоводородной кислоты и производства фторида алюминия, включающему обработку кремнегеля раствором минеральных кислот, отделение, промывку и сушку, причем кремнегель сушат при температуре от...
Тип: Изобретение
Номер охранного документа: 0002765952
Дата охранного документа: 07.02.2022
+ добавить свой РИД