×
25.08.2017
217.015.b28a

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002614054
Дата охранного документа
22.03.2017
Аннотация: Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости включает воздействие на контролируемую диэлектрическую жидкость электромагнитными волнами на измерительном участке на двух разных частотах и которым соответствуют разные значения диэлектрической проницаемости воды, и определяют по результату этих воздействий соответствующие значения диэлектрической проницаемости ∈ и ∈ жидкости, при этом влагосодержание определяют как результат совместного преобразования измеряемых значений ∈ и ∈, по фазовому сдвигу Δϕ и Δϕ, по формуле где , где и - диэлектрическая проницаемость воды на частотах и соответственно, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости. Повышение точности измерения влагосодержания является техническим результатом изобретения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам.

При измерениях физических параметров веществ часто требуется на практике принимать меры для обеспечения независимости результатов измерения к физическим, в частности электрофизическим, параметрам влагосодержащей жидкости.

Известны способы измерения и реализующие их устройства для определения влагосодержания различных жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. 208 с. С. 168-177). Эти устройства содержат радиоволновые (ВЧ и СВЧ) чувствительные элементы в виде антенн, волноводов, длинных линий, полосковых линий, резонаторов. В частности, для измерений в трубопроводах такие устройства содержат проточные объемные резонаторы с торцевыми элементами в виде запредельных волноводов (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. 208 с. С. 173-174). Недостатком таких способов и устройств является невысокая точность измерения при изменении сортности контролируемых веществ, в частности базового вещества в смеси (эмульсии, растворе и др.).

Известно также техническое решение (SU 1497531 A1, 30.07.1989), содержащее описание способа измерения, наиболее близкого по технической сущности к предлагаемому способу, и принятое в качестве прототипа. Этот известный способ состоит в применении двух измерительных каналов, каждый из которых содержит два проточных объемных резонатора, встраиваемых в трубопровод с перекачиваемым веществом, включенных в качестве частотозадающих элементов в схемы соответствующих автогенераторов, блок вычислений и индикатор. Указанные резонаторы встроены в трубопровод на его измерительном участке последовательно. Способ позволяет определять влагосодержание вещества независимо от его сортности, являющейся функцией электрофизических параметров вещества. Недостатком данного способа является невысокая точность измерения. Обусловлено это необходимостью проведения при реализации способа измерений резонансных частот объемных резонаторов. Эти частоты, однако, не являются фиксированными и, следовательно, переменными являются значения диэлектрической проницаемости воды на этих двух переменных частотах, хотя их точное знание необходимо для осуществления способа. Это заведомо предопределяет снижение точности измерения при переменности значений диэлектрической проницаемости воды или их изменении в процессе измерения.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что предлагаемый способ определения влагосодержания жидкости, при котором воздействуют на контролируемую диэлектрическую жидкость электромагнитными волнами на измерительном участке на двух разных частотах и которым соответствуют разные значения диэлектрической проницаемости воды, и определяют по результату этих воздействий соответствующие значения диэлектрической проницаемости ∈1 и ∈2 жидкости, а влагосодержание определяют как результат совместного преобразования измеряемых значений ∈1 и ∈2, значения ∈1 и ∈2 определяют по фазовому сдвигу Δϕ1 и Δϕ2, соответственно, а влагосодержание определяют по величине где , и - диэлектрическая проницаемость воды на частотах и соответственно, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

Предлагаемый способ поясняется чертежом на фиг. 1, где изображена функциональная схема реализующего способ устройства, поясняющая сущность способа.

Здесь показаны генераторы 1 и 2, передающие антенны 3 и 4, трубопровод 5, приемные антенны 6 и 7, фазовые детекторы 8 и 9, вычислительное устройство 10, индикатор 11.

Сущность предлагаемого способа состоит в следующем.

В данном способе реализуют структурный подход к достижению инвариантности к диэлектрической проницаемости ∈н контролируемой жидкости, в частности, к ее сортности, изменения которой имеют место, в частности, при контроле нефти и нефтепродуктов в какой-либо емкости или в процессе их транспортирования. Этот подход связан с организацией двух измерительных каналов с совместным функциональным преобразованием их выходных величин с целью получения результата этого преобразования, который не зависит от возмущающего фактора, в данном случае - от величины диэлектрической проницаемости ∈н контролируемой жидкости и изменений ∈н.

Величина диэлектрической проницаемости ∈1 влагосодержащего диэлектрика, имеющего диэлектрическую проницаемость ∈н и влагосодержание W, описывается при малых W формулой Винера (Теория и практика экспрессного контроля влажности твердых и жидких материалов / Кричевский Е.С., Бензарь В.К., Венедиктов В. М.В. Под общ. ред. Кричевского Е.С. М.: Энергия. 1980. 240 с.):

где , - диэлектрическая проницаемость воды, являющаяся функцией частоты в СВЧ-диапазоне частот.

Например, если производить измерения на частоте то а на частоте то если считать ∈н=2.

При проведении измерений на фиксированной частоте электромагнитной волны при прохождении ею слоя диэлектрика (влагосодержащей жидкости) имеет место фазовый сдвиг этой волны

С учетом (1) формула (2) принимает следующий вид:

Согласно данному способу, измерение значения Δϕ1 и Δϕ2 фазового сдвига производят на двух соответствующих фиксированных частотах и электромагнитной волны. При этом получаем два соотношения:

где , .

Выражения для в формулах (4) и (5) можно упростить, если положить , и не зависят от ∈н, что допустимо при малых значениях влагосодержания (до ~ 5%) и реальных пределах изменения ∈н.

Постоянство величин и для соответствующих частот и вытекает из постоянства величин ∈н и ∈в, входящих в формулы для и Величина постоянна в широком диапазоне изменения частоты , величина ∈в постоянна на недисперсионном участке кривой и принимается постоянной на дисперсионном участке этой кривой. Это справедливо при проведении изменений с помощью измерительных устройств, работающих на фиксированных частотах.

Покажем теперь на реальном примере, что и а точнее величины входящие в общем виде (при произвольном значении частоты ) в формулу (1), не зависят (с некоторой допустимой погрешностью) от ∈н. Так, при реальном изменении ∈в на 10% по сравнению с первоначальным значением ∈н=2, т.е. до значения 2,2, при значениях частот и будем иметь:

при ∈н=2:

при ∈н=2,2:

Отсюда следует, что относительное изменение есть ~ 0,9%, а относительное изменение есть ~ 2,6%.

Оценим, как влияют эти изменения и на коэффициенты при в формуле (1) при и а именно на коэффициент и коэффициент :

при ∈н=2 имеем: k1≈2,752, k2≈2,31;

при ∈н=2,2 имеем: k1≈2,727, k2≈2,33.

Отсюда следует, что относительное изменение как k1, так и k2 есть ~ 0,9%, что в ~100 раз меньше относительного изменения ∈н, т.е. реальное изменение ∈н не влияет практически на k1 и k2. В формулах для и можно использовать для выражения ∈н значение - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

При достаточно больших значениях W следует использовать другие известные выражения для ∈ (Теория и практика экспрессного контроля влажности твердых и жидких материалов/ Кричевский Е.С., Бензарь В.К., Венедиктов В. М.В. Под общ. ред. Кричевского Е.С. М.: Энергия. 1980. 240 с.).

С учетом вышесказанного формулы (4) и (5) могут быть записаны, соответственно, так:

Производя в первом измерительном канале определение Δϕ1 согласно соотношению (6), а во втором измерительном канале определение Δϕ2 согласно соотношению (7), будем иметь систему двух уравнений (6) и (7) для определения W. Решая эту систему уравнений, находим значение влагосодержания W:

где , , и - диэлектрическая проницаемость воды на частотах и соответственно, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

Итак, полученное соотношение (8) обеспечивает при измерениях W достижение инвариантности к величине ∈н контролируемой жидкости.

На фиг. 1 приведена схема устройства, реализующая данный способ измерения. Электромагнитные колебания частот и поступают с генераторов 1 и 2 на соответствующие передающие антенны 3 и 4. Выходные сигналы приемных антенн 6 и 7, расположенных с противоположных сторон трубопровода 5, подаются вместе с опорными сигналами с генераторов 1 и 2 на входы фазовых детекторов 8 и 9. Их выходные сигналы, пропорциональные фазовым сдвигам Δϕ1 и Δϕ2, поступают далее на вычислительное устройство 10 и далее на индикатор 11 для определения влагосодержания W. Зондирование потока с помощью антенн 3 и 6, 4 и 7 осуществляется через радиопрозрачные окна в стенках трубопровода.

Производя в вычислительном блоке 10 совместно преобразование измеряемых значений Δϕ1 и Δϕ2 согласно (8), определяют искомое значение влагосодержания W, которое не зависит от диэлектрической проницаемости ∈н контролируемой жидкости.

Предлагаемый способ может быть реализован как при работе с образцами контролируемой влагосодержащей жидкости в стационарных условиях, так и при ее движении - при перемещении жидкости по трубопроводу.

Способ измерения влагосодержания жидкости, при котором воздействуют на контролируемую диэлектрическую жидкость электромагнитными волнами на измерительном участке на двух разных частотах и , которым соответствуют разные значения диэлектрической проницаемости воды, и определяют по результату этих воздействий соответствующие значения диэлектрической проницаемостии жидкости, а влагосодержание определяют как результат совместного преобразования измеряемых значений и , отличающийся тем, что значения и определяют по фазовому сдвигу Δϕ и Δϕ соответственно, а влагосодержание определяют по величине , где , и - диэлектрическая проницаемость воды на частотах и соответственно, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 51-53 из 53.
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
Показаны записи 61-70 из 86.
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bf5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002671936
Дата охранного документа: 07.11.2018
20.03.2019
№219.016.e777

Способ определения физических свойств жидкостей или газов

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002415409
Дата охранного документа: 27.03.2011
10.04.2019
№219.017.07bf

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Техническим результатом изобретения является расширение границ области применения датчика давления и повышение его чувствительности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408856
Дата охранного документа: 10.01.2011
+ добавить свой РИД