×
25.08.2017
217.015.b219

Результат интеллектуальной деятельности: МАТЕРИАЛ КЕРАМИЧЕСКОГО СЛОЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ

Вид РИД

Изобретение

№ охранного документа
0002613005
Дата охранного документа
14.03.2017
Аннотация: Изобретение относится к области теплотехники, а именно к теплозащитным покрытиям лопаток энергетических и транспортных турбин, и может быть использовано в других областях техники для защиты теплонагруженных конструкций. Покрытие содержит оксид циркония, оксид иттрия и оксид алюминия при следующем соотношении компонентов , масс. %: AlO - 1-8, YO - 7-9, ZrO - остальное. Технический результат - расширение области применения керамического теплозащитного покрытия с теплопроводностью λ≥1 Вт/мК за счет использования в нем широкодоступного материала - алюминия, оксид которого химически более устойчив. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области теплотехники, а именно к теплозащитным покрытиям лопаток энергетических и транспортных турбин, и может быть использовано в других областях техники для защиты теплонагруженных конструкций.

Для улучшения эксплуатационных характеристик турбин на поверхность их лопаток наносят многослойное теплозащитное покрытие с внешним керамическим слоем, имеющим низкий коэффициент теплопроводности и устойчивым к воздействию высокотемпературной химически агрессивной среды.

Известен материал керамического слоя теплозащитного покрытия лопаток турбин и способ его нанесения, включающий нанесение слоя жаростойкого покрытия из никелевого сплава, нанесение второго слоя из сплава на основе алюминия и нанесение третьего внешнего керамического слоя на основе ZrO2, стабилизированного 7-9% Y2O3 /патент РФ №2078148/.

Недостатком этого способа является недостаточно низкая теплопроводность керамического слоя λ=2,5-3,0 Вт/м К.

Известен способ нанесения комбинированного теплозащитного покрытия на лопатки ГТД, в котором внешний керамический слой ZrO2-8Y2O3 покрывают 10-15 мкм слоем керамики ZrO2-11Y2O3-40Al2O3 с пониженной кислородопроводностью, наносимого электронно-лучевым методом с последующим спеканием /патент РФ №2349679/.

Недостатками этого способа являются недостаточно низкая теплопроводность внешнего керамического слоя, а также сложность технологии и ограниченная применимость нанесения электронно-лучевым методом керамического слоя теплозащитного покрытия при распылении порошков из диэлектрических материалов.

Известно, что максимальный эффект снижения теплопроводности керамики на основе ZrO2, стабилизированного Y2O3, дает добавка в нее смеси оксидов редкоземельных металлов /лантаноидов/ с обязательным включением в состав смеси Yb2O3 /NASA/ТМ-2002-211481/.

Известно, что перспективным направлением снижения теплопроводности керамического покрытия является введение в состав керамики на основе ZrO2, стабилизированного Y2O3, одного и более оксидов редкоземельных элементов /http://viam-works.ru/ru/articles?art_id=802 Д.А. Чубаров, С.А. Будиновский. Выбор керамического материала для теплозащитного покрытия лопаток авиационных турбин на рабочие температуры 1400°C/.

Наиболее эффективный способ получения качественного внешнего керамического слоя теплозащитного покрытия на поверхности лопатки турбины является магнетронное распыление мишени сплава металлов компонентов керамики в кислородной среде /там же/.

Получить сплав металлов Zr, Y и Yb крайне затруднительно, так как температура испарения Yb (1211°C) меньше температуры плавления Zr (1852°C) и Y (1525°C).

Ближайшим техническим решением является керамическое теплозащитное покрытие для изделий из жаропрочных литейных сплавов на основе никеля, содержащее оксид циркония, оксид гадолиния и оксид иттрия при соотношении компонентов, масс. %: Gd2O3 - 2-9%, Y2O3 - 7-9%, ZrO2 - остальное /Патент RU 2556248/. Теплопроводность этого покрытия составляет λ≥1 Вт/м К.

Недостатками этого решения являются использование редко существующего в природе металла: гадолиния, что ограничивает широкое использование этого покрытия в технике, и пониженная долговечность при работе в химически активных средах.

Задачей изобретения является устранение указанных выше недостатков.

Техническим результатом предложенного технического решения является создание керамического теплозащитного покрытия с не худшей теплопроводностью (λ≥1 Вт/м К), но использующего широкодоступный в природе материал и более стабильного к воздействию химически активной среды.

Указанная задача решается, а технический эффект достигается за счет того, что в керамическое защитное покрытие, содержащее оксид циркония и оксиды металлов третьей группы Периодической системы Д.И. Менделеева, один из которых оксид иттрия, вводят оксид алюминия, при этом оксиды в покрытие входят в следующем соотношении, масс. %: Al2O3 - 1-8%, Y2O3 - 7-9%, ZrO2 - остальное.

В покрытие дополнительно добавляют один и более оксидов лантаноидов, масс. %: 2-9%.

Покрытие наносят на изделия из жаропрочных сплавов и методом магнетронного распыления.

Известно, что теплопроводность твердого диэлектрического тела определяется фонон-фононные столкновениями и зависит от упорядочности структуры его кристаллической решетки. Чем менее упорядочена структура, чем сильнее искажена решетка, тем меньше длина пробега фононов, тем меньше ее теплопроводность /Сивухин Д.В. Атомная и ядерная физика: Ч. 1. Атомная физика. - М.: Наука. 1986. - 426 с./.

Известно, что из оксидов редкоземельных металлов (лантаноидов), добавляемых в керамику на основе оксида циркония, наибольшее влияние на снижение теплопроводности керамики оказывает оксид иттербия /NASA/TM-2002-211481/.

Основное отличие иттербия от других редкоземельных металлов состоит в типе кристаллической решетки: только у него она гранецентрированная кубическая (ГЦК), а у большинства других, как правило, гексагональная (ГЕК). Это отличие проявляется в низкой температуре плавления (824°C) и является причиной того, что при переходе иттербия из металла в оксид плотность вещества возрастает с 7 г/см3 до 9,17 г/см3 или 1,3 раза, несмотря на добавку к «тяжелому» металлу «легкого» кислорода. Другие редкоземельные металлы такими свойствами не обладают: их температура плавления выше, а плотность их оксидов практически не отличается от плотности самих металлов.

Вследствие вышесказанного, добавка иттербия в керамику меняет ее таким образом, что это приводит к снижению теплопроводности.

Аналогичные свойства присущи алюминию, причем они проявляются еще в большей степени, чем у иттербия. Обладая тем же типом решетки ГЦК, алюминий имеет еще более низкую температуру плавления 667°C, а при его переходе в оксид плотность вещества возрастает в 1,5 раза.

Но, в отличие от иттербия, имеющего низкую температуру кипения 1211°C, у алюминия она составляет 2520°C, что позволяет легко получать сплав циркония и иттрия с алюминием, а следовательно, использовать полученный сплав в наиболее эффективном способе получения теплозащитного покрытия методом магнетронного распыления.

Величина добавки оксида алюминия в керамику определяется из условия интенсификации процесса рассеяния фонона в ее решетке: расстояние между молекулами оксида алюминия в керамике должно быть сравнимо с длиной пробега фонона в керамике без оксида алюминия.

Характерная величина длины пробега фонона 1 находилась из известной эмпирической формулы: λ=cρV1/3, где c - теплоемкость, ρ - плотность, V - скорость фононов, равная половине скорости звука /Сивухин Д.В. Атомная и ядерная физика: Ч. 1. Атомная физика. - М.: Наука. 1986. - 426 с./. Расчеты проводились для оксида циркония, основной компоненты керамики: λ=0,02 Вт/см К, c=0,5 Дж/г К, ρ=5,7 г/см3, Vs=1,85 105 см/с /Физические величины: Справочник/ А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский / Под редакцией И.С. Григорьева. - М.; Энергоатомиздат, 1991. - 1232 с./ и составила величину l=1,1 10-7 см.

Среднее расстояние d между молекулами оксида циркония, имеющего массу M=2,46 10-22 г, определялось как d=(M/ρ)1/3=0,35 10-7 см.

Таким образом, требуемая величина добавки оксида алюминия в объем керамики на основе оксида циркония составляет (d/l)3=0,03 или 3%.

Учитывая усредненность данной оценки, разумно дать диапазон требуемой добавки, уменьшив и увеличив ее в e-раз (e=2,71 - экспонента), т.е. ≈1-8%.

Для проверки правильности этой трактовки были проведены тестовые испытания двух типов керамик: керамика ZrO2-7% Y2O3-2% Gd2O3 (прототип) и керамика ZrO2-8% Y2O3-kAl2O3, где k=1-8%.

Указанные материалы наносили следующим образом. На плоские дисковые монокристаллические образцы диаметром 25,4 мм и толщиной 5 мм из жаропрочного сплава ЖС32 (сплав Ni-Co-W-Al-Cr-Ta-Re-Nb-Mo-B-C) наносили в ионно-плазменной установке МАП-1 по серийной технологии жаростойкое двух стадийное конденсационно-диффузионное покрытие сплава СДП-2 на основе никеля с содержанием алюминия, хрома, иттрия и из сплава на основе алюминия ВСДП-16, легированного никелем и иттрием. Затем проводили вакуумную термообработку покрытых образцов для получения исходной структуры покрытия и поверхностную обработку образцов для последующего нанесения керамического слоя.

Керамический слой толщиной 60 мкм наносили методом магнетронного распыления в аргоно-кислородной среде.

Измерение теплопроводности керамического слоя проводили импульсным лазерным методом.

Результаты испытаний представлены в таблице 1.

Как следует из таблицы, предложенный материал керамического слоя сохраняет теплопроводность на уровне прототипа λ≥1 Вт/м К.

Алюминий является существенно более распространенным и доступным в природе металлом по сравнению с гадолинием: цена алюминия более чем в 100 раз ниже.

Алюминий химически более активный металл по сравнению с другими металлами третьей группы, за исключением бора, поэтому оксид алюминия более устойчив к воздействию химически активной среды, чем оксид гадолиния.

Таким образом, предложенное техническое решение расширяет область использования керамического теплозащитного покрытия с теплопроводностью λ≥1 Вт/м К за счет использования в нем широкодоступного материала - алюминия, оксид которого химически более устойчив.

Для повышения термостойкости покрытия к циклическим нагрузкам в него добавляют 2-9% оксидов лантаноидов. Например, добавка в покрытие оксида гадолиния 4,5% увеличивает число термических циклов, выдерживаемых покрытием в 1,5 раза.

Для защиты лопаток турбин покрытие наносят на изделия из жаропрочных сплавов, например, на основе никеля.

Для повышения качества покрытия его наносят методом магнетронного распыления.

Таким образом, предложенное керамическое теплозащитное покрытие использует широко распространенный в природе материал, более стабильный при работе в химически активной среде, сохраняя теплопроводность на уровне 1 Вт/м К.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 26.
10.01.2013
№216.012.18fb

Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости...
Тип: Изобретение
Номер охранного документа: 0002471887
Дата охранного документа: 10.01.2013
10.04.2014
№216.012.b493

Тепловой диод

Изобретение относится к области теплотехники, в частности к регулировке температурных режимов теплонагруженных устройств, и может быть использовано в твердотельной и вакуумной электронике, в авиационном двигателестроении, а также других областях техники. Тепловой диод содержит, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002511948
Дата охранного документа: 10.04.2014
27.09.2014
№216.012.f710

Броневая защита от поражения ударным оружием

Изобретение относится к области военной техники, в частности к броневым защитным конструкциям. Броневая защита от поражения ударным оружием включает подложку и наружный покровный слой. Подложка выполнена одно- или двухслойной. Покровный слой выполнен из материала, скорость звука в котором...
Тип: Изобретение
Номер охранного документа: 0002529085
Дата охранного документа: 27.09.2014
10.01.2015
№216.013.1738

Способ плазменно-электромагнитного воздействия на диэлектрический материал

Изобретение относится к технологии термической обработки твердых диэлектрических тел, включая их разрушение, в частности тел с низким коэффициентом поглощения электромагнитного излучения (горные породы, строительные материалы и пр.), и может быть использовано в горном деле и строительстве....
Тип: Изобретение
Номер охранного документа: 0002537372
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3897

Способ удаления покрытия из нитрида циркония с подложки из титана или титановых сплавов

Изобретение относится к технологии удаления защитных покрытий из нитрида циркония с изделий, содержащих подложку из титана или титановых сплавов, в частности лопаток газотурбинных двигателей. В способе покрытие из нитрида циркония с подложки из титана или титанового сплава удаляют путем...
Тип: Изобретение
Номер охранного документа: 0002545975
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5cdb

Способ электролитно-плазменной обработки поверхности деталей из малоуглеродистых сталей с повышенным содержанием хрома

Изобретение относится к технологии полирования изделий из малоуглеродистых сталей с повышенным содержанием хрома и может быть использовано в авиационном и энергетическом машиностроении, в частности для финишной обработки лопаток компрессора. Способ включает погружение обрабатываемой детали в...
Тип: Изобретение
Номер охранного документа: 0002555312
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6083

Материал керамического слоя теплозащитного покрытия

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении для нанесения теплозащитного покрытия на трактовую поверхность рабочих и сопловых лопаток турбины газотурбинного двигателя. Керамическое теплозащитное покрытие для изделий из...
Тип: Изобретение
Номер охранного документа: 0002556248
Дата охранного документа: 10.07.2015
10.12.2015
№216.013.96fe

Способ получения износостойкого высокотемпературного покрытия

Изобретение относится к технологии нанесения ионно-плазменных покрытий и может быть использовано для обработки поверхности металлических изделий, таких как детали трения в компрессоре газотурбинных двигателей и установок. Способ получения покрытия на поверхности металлического изделия включает...
Тип: Изобретение
Номер охранного документа: 0002570274
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
10.08.2016
№216.015.526b

Источник рентгеновского излучения

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002594172
Дата охранного документа: 10.08.2016
Показаны записи 1-10 из 41.
10.01.2013
№216.012.18fb

Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости...
Тип: Изобретение
Номер охранного документа: 0002471887
Дата охранного документа: 10.01.2013
10.04.2014
№216.012.b493

Тепловой диод

Изобретение относится к области теплотехники, в частности к регулировке температурных режимов теплонагруженных устройств, и может быть использовано в твердотельной и вакуумной электронике, в авиационном двигателестроении, а также других областях техники. Тепловой диод содержит, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002511948
Дата охранного документа: 10.04.2014
27.09.2014
№216.012.f710

Броневая защита от поражения ударным оружием

Изобретение относится к области военной техники, в частности к броневым защитным конструкциям. Броневая защита от поражения ударным оружием включает подложку и наружный покровный слой. Подложка выполнена одно- или двухслойной. Покровный слой выполнен из материала, скорость звука в котором...
Тип: Изобретение
Номер охранного документа: 0002529085
Дата охранного документа: 27.09.2014
10.01.2015
№216.013.1738

Способ плазменно-электромагнитного воздействия на диэлектрический материал

Изобретение относится к технологии термической обработки твердых диэлектрических тел, включая их разрушение, в частности тел с низким коэффициентом поглощения электромагнитного излучения (горные породы, строительные материалы и пр.), и может быть использовано в горном деле и строительстве....
Тип: Изобретение
Номер охранного документа: 0002537372
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3897

Способ удаления покрытия из нитрида циркония с подложки из титана или титановых сплавов

Изобретение относится к технологии удаления защитных покрытий из нитрида циркония с изделий, содержащих подложку из титана или титановых сплавов, в частности лопаток газотурбинных двигателей. В способе покрытие из нитрида циркония с подложки из титана или титанового сплава удаляют путем...
Тип: Изобретение
Номер охранного документа: 0002545975
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5cdb

Способ электролитно-плазменной обработки поверхности деталей из малоуглеродистых сталей с повышенным содержанием хрома

Изобретение относится к технологии полирования изделий из малоуглеродистых сталей с повышенным содержанием хрома и может быть использовано в авиационном и энергетическом машиностроении, в частности для финишной обработки лопаток компрессора. Способ включает погружение обрабатываемой детали в...
Тип: Изобретение
Номер охранного документа: 0002555312
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6083

Материал керамического слоя теплозащитного покрытия

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении для нанесения теплозащитного покрытия на трактовую поверхность рабочих и сопловых лопаток турбины газотурбинного двигателя. Керамическое теплозащитное покрытие для изделий из...
Тип: Изобретение
Номер охранного документа: 0002556248
Дата охранного документа: 10.07.2015
10.12.2015
№216.013.96fe

Способ получения износостойкого высокотемпературного покрытия

Изобретение относится к технологии нанесения ионно-плазменных покрытий и может быть использовано для обработки поверхности металлических изделий, таких как детали трения в компрессоре газотурбинных двигателей и установок. Способ получения покрытия на поверхности металлического изделия включает...
Тип: Изобретение
Номер охранного документа: 0002570274
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
10.08.2016
№216.015.526b

Источник рентгеновского излучения

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002594172
Дата охранного документа: 10.08.2016
+ добавить свой РИД