×
25.08.2017
217.015.b207

Результат интеллектуальной деятельности: ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ, СТОЙКИХ К АБРАЗИВНОМУ ИЗНОСУ И ВЫСОКОТЕМПЕРАТУРНОЙ КОРРОЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника, выполненного из шихты, содержащего, мас. %: хром 5,0-15,0, бор 1,0-5,0, алюминий 2,0-12,0, углерод 0,2-1,0, иттрий 0,5-1,0, железо остальное. Полученные покрытия имеют высокие характеристики микротвердости и жаростойкости. Повышается износостойкость и коррозионная стойкость деталей, работающих в условиях воздействия частиц абразива и высоких температур. 1 табл., 1 пр.

Изобретение относится к области материалов для получения покрытий методами газотермического напыления, а именно к порошковым проволокам для получения покрытий, стойких к абразивному износу и высокотемпературной коррозии, с использованием процесса дуговой металлизации, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур, например труб топочных экранов бойлеров тепловых электростанций.

Известна порошковая проволока [1], включающая оболочку из стали и сердечник, выполненный из шихты, в состав которой в различных сочетаниях введены порошок хрома металлического, железа и карбида бора, причем карбид бора содержит, мас. %: бора 88 и углерода 12. Химический состав указанной порошковой проволоки, мас. %: хром 18-28, бор 4-10, железо - основа.

В структуре покрытий, получаемых при дуговой металлизации данной проволокой, присутствуют, преимущественно, железо и хром Fe и Cr и в меньшей степени бориды Fe2B и оксиды Fe3O4. Указанные покрытия имеют микротвердость 708-800 HV100. Жаростойкость покрытий (показатель, обратный приросту массы) в 5 раз выше, чем у низкоуглеродистой стали. Однако этого недостаточно для указанных выше областей применения [2]. Низкая жаростойкость обусловлена наличием в покрытии, получаемом при дуговой металлизации данной проволокой, преимущественно структурных составляющих с низкими защитными свойствами, боридов Fe2B и оксидов Fe3O4.

В качестве прототипа выбрана порошковая проволока [3], включающая оболочку из стали и сердечник, выполненный из шихты, химический состав указанной порошковой проволоки, мас. %: хром 5,5-9,0, бор 1,2-4,0, алюминий 2,5-10,0, железо - основа.

В структуре покрытий, получаемых при дуговой металлизации данной проволокой, присутствуют, преимущественно, железо и хром Fe и Cr, в меньшей степени оксиды Fe3O4 и Al2O3. Указанные покрытия имеют микротвердость 324-394 HV100. Микротвердость покрытий в 2-4 раза ниже в сравнении с показателями микротвердости и, соответственно, износостойкости покрытий [2]. Жаростойкость покрытий в 20 раз выше, чем у низкоуглеродистой стали. К недостаткам прототипа относится низкая износостойкость покрытий, получаемых при дуговой металлизации данной проволокой.

Задачей технического решения является повышение износо- и коррозионной стойкости деталей, работающих в условиях воздействия частиц абразива и высоких температур.

Поставленная задача решается методом дуговой металлизации порошковой проволоки для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии, состоящей из стальной оболочки и сердечника, выполненного из шихты, содержащей хром, бор, алюминий и отличающаяся тем, что дополнительно введены углерод и иттрий при следующем соотношении компонентов, мас. %: хром 5,0-15,0%, бор 1,0-5,0%, алюминий 2,0-12,0%, углерод 0,2-1,0%, иттрий 0,5-1,0%, железо - основа.

В отличие от прототипа в состав шихты дополнительно введены углерод и иттрий, а также увеличено содержание хрома, бора и алюминия.

За счет введения в шихту углерода, хрома и бора покрытия, получаемые при дуговой металлизации предлагаемой порошковой проволокой, обладают высокой износостойкостью, так как в их структуре присутствуют в качестве упрочняющих фаз комплексные карбобориды (Fe, Cr)2(B, C). Данные карбобориды характеризуются высокой способностью противостоять разрушению абразивными частицами за счет высокой силы межатомных связей входящих в них элементов [4], характеризуемой теплотой образования, свободной энергией образования, температурой плавления и микротвердостью упрочняющих фаз.

Введение указанных легирующих в шихту в количествах, обеспечивающих содержание углерода, хрома и бора менее чем 0,2%, 5,0% и 1,0 мас. % соответственно, по результатам исследований [5] не позволяет обеспечить формирование в структуре металлизационных покрытий в достаточном количестве упрочняющих фаз комплексных карбоборидов, в результате они обладают низкой микротвердостью и, соответственно, износостойкостью.

В то же время введение указанных тугоплавких компонентов шихты (для компонентов содержащих хром, температура плавления от 1855°С, бор - от 2075°С [6]) в количествах, обеспечивающих содержание углерода, хрома и бора более чем 1,0%, 15,0% и 5,0 мас. % соответственно не позволяет обеспечить равномерный характер плавления порошковой проволоки при металлизации покрытий, в результате они обладают низкой жаростойкостью.

За счет введения в шихту алюминия и иттрия покрытия, получаемые при дуговой металлизации предлагаемой порошковой проволокой, обладают высокой жаростойкостью из-за большого сродства алюминия и иттрия к кислороду (свободная энергия образования оксидов легирующих элементов, кДж/моль: Y2O3 - 1300; Al2O3 - 1120 [7]), что способствует снижению степени окисления частиц распыляемого материала и улучшению условий взаимодействия в контакте «частица-подложка». При нагреве на поверхности покрытий формируются комплексные оксиды (Fe, Al, Y)2O3 [8]. Данные оксиды характеризуются высокой температурой плавления, химической и термической стабильностью, низкой скоростью роста, высокой прочностью сцепления с основным металлом в процессе циклических нагревов (теплосмен).

Введение указанных легирующих в шихту в количествах, обеспечивающих содержание алюминия и иттрия менее чем 2,0% и 0,5 мас. % соответственно, по результатам исследований [9] не позволяет снизить степень окисления частиц распыляемого материала и обеспечить формирование на поверхности при нагреве металлизационных покрытий в достаточном количестве комплексных оксидов, в результате они обладают низкой жаростойкостью.

В то же время введение указанных легирующих в шихту в количествах, обеспечивающих содержание алюминия и иттрия более чем 12,0%, и 1,0 мас. % соответственно, согласно данным различных авторов способствует снижению микротвердости покрытий и, соответственно, их износостойкости [10, 11].

Пример конкретного выполнения

По предложенному техническому решению изготовлена порошковая проволока с сердечником из шихты, в состав которой введены (в долях от массы проволоки): феррохром высокоуглеродистый ФХ650А 3-6%, ферро-хромбор ФХБ-1 6-26%, порошок алюминиевый ПА4 2-12%, алюмоиттрий АИ65 0,8-1,6%.

Покрытие толщиной 1,0 мм нанесено методом дуговой металлизации из разработанной проволоки (аппарат АДМ-10, ток 320 А, напряжение 34 В) на призмы 10×10×50 мм из стали Ст 3.

Микротвердость с поверхности металлизационных покрытий измеряли согласно ГОСТ 9450 на микротвердомере Leica VMHT AUTO при нагрузке 100 г, индентором служила алмазная пирамида с углом между противоположными гранями 136°.

Жаростойкость образцов покрытий определяли согласно ГОСТ 9.312 как величину, обратную приросту массы в результате выдержки в течение 100 часов при температуре 700°С.

Износостойкость определяли для образцов покрытий с размерами 10×10 мм путем совершения возвратно-поступательных движений по шлифовальной бумаге 14А по ГОСТ 6456 на основе электрокорунда. Путь трения образца за одно испытание при скорости движения 0,158 м/с устанавливался равным 60 м, нормальная удельная нагрузка на образец - равной 1 МПа, величина поперечного смещения шлифовальной бумаги на один двойной ход образца - равной 0,0012 м. Износостойкость образцов покрытий определяли как величину, обратную потере массы по результатам трех испытаний.

Техническим результатом является повышение микротвердости и жаростойкости покрытий, получаемых при дуговой металлизации из разработанной проволоки по сравнению с покрытиями, получаемыми из проволоки-прототипа в 4 и 3 раза соответственно.

Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом показано в Таблице 1.

Для условий изнашивания с преимущественным разрушением поверхностного слоя под действием твердых абразивных частиц материалы с высокой твердостью отличаются также и высокой износостойкостью [12].

Авторами изобретения установлено, что для покрытий с высокой микротвердостью, получаемых при дуговой металлизации из разработанной порошковой проволоки, износостойкость на порядок выше, чем у низкоуглеродистых сталей. Так, потеря массы для стали Ст3 по результатам испытаний составляет 1,00 г, а для покрытия - 0,16 г.

Литература

1. CN 102703849 A Cored wire for preparing FeCrB coating through electric arc spraying and coating preparation method.

2. Wielage В., Pokhmurska H., Student M., Gvozdeckii V., Stupnyckyj Т., Pokhmurskii V. Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures. Surface Coatings Technology, 2013, 220, pp. 27-35.

3. CN 103233195 A Powder-core wire for preparing iron-base corrosion-resistant coating by arc spraying and preparation method of coating.

4. Крагельский, И.В. Трение и износ. - М.: Машгиз, 1962. - 383 с.

5. Коробов Ю.С., Невежин С.В., Верхорубов B.C., Ример Г.А., Кашфуллин A.M. Исследование влияния технологических параметров дуговой металлизации на адгезионную прочность покрытий. Сварка и диагностика, 2015, №1, с. 24-26.

6. Рысс М.А. Производство ферросплавов. - М.: Металлургия, 1985. - 344 с.

7. Кулик А.Я., Борисов Ю.С. Газотермическое напыление композиционных порошков. - Л.: Машиностроение, 1985. - 199 с.

8. Невежин С.В. Совершенствование состава проволок для дуговой металлизации жаростойких покрытий на основе нейросетевого моделирования. Автореф. дис. канд. тех. наук. - Екатеринбург, 2014. - 24 с.

9. Коробов Ю.С., Невежин С.В., Верхорубов B.C., Ример Г.А. Разработка порошковых проволок для дуговой металлизации жаростойких покрытий на основе нейросетевого моделирования. Сварка и диагностика, 2014, №5, с. 18-23.

10. Похмурский В.И., Студент М.М., Довгунык В.М., Сидорак И.И. Порошковые проволоки систем FeCrB+Al и FeCr+Al+C для электродуговой металлизации. Автоматическая сварка, 2002, №3, с. 32-35.

11. Не D.Y., Jiang J.M., Sha P., Li X.Y., Shi Y.W. Effect of Rare Earth Elements on the Wear Resistance of Iron-Based Thermal Sprayed Coatings. ITSC 2004. ASM International. 2004. pp. 1463-1466.

12. Тененбаум M.M. Износостойкость конструкционных материалов и деталей машин при абразивном изнашивании. - М.: Машиностроение, 1966. - 322 с.

Источник поступления информации: Роспатент

Показаны записи 91-100 из 209.
04.10.2018
№218.016.8e6c

Способ прокатки рельсов

Изобретение относится к области прокатки рельсов. Способ включает прокатку в реверсивных клетях дуо чернового рельсового раската и дальнейшую его прокатку в непрерывно-реверсивной группе клетей, состоящей из двух универсальных четырехвалковых клетей, расположенной между ними вспомогательной...
Тип: Изобретение
Номер охранного документа: 0002668626
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.904d

Устройство для получения пленок

Изобретение относится к области ионно-плазменного напыления многослойных пленок, в частности к устройству для получения многослойных пленок. Устройство содержит экранированную катод-мишень и подложкодержатель, расположенный в горизонтальном магнитном поле. При распылении центр подложки...
Тип: Изобретение
Номер охранного документа: 0002669259
Дата охранного документа: 09.10.2018
27.10.2018
№218.016.9750

Мобильный гелиоопреснитель

Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре...
Тип: Изобретение
Номер охранного документа: 0002670928
Дата охранного документа: 25.10.2018
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
19.12.2018
№218.016.a856

Способ извлечения металлов из растворов

Изобретение относится к металлургии цветных металлов, в частности к извлечению благородных металлов из цианистых растворов цинком или алюминием. Способ включает контактирование растворов с электроотрицательным металлом, загруженным в донную конусную часть цементатора. Раствор подают снизу...
Тип: Изобретение
Номер охранного документа: 0002675135
Дата охранного документа: 17.12.2018
30.12.2018
№218.016.adb5

Имитатор радиолокационной цели

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для настройки технических параметров радиолокационных станций (РЛС) на заводе-изготовителе и их проверки при регламентных работах в течение всего срока эксплуатации. Наиболее предпочтительно его...
Тип: Изобретение
Номер охранного документа: 0002676469
Дата охранного документа: 29.12.2018
18.01.2019
№219.016.b134

Способ изготовления труб

Изобретение относится к металлургии, к изготовлению стальных горячедеформированных труб и может использоваться при производстве труб горячей прокаткой на трубопрокатных агрегатах. Способ включает нагрев и прошивку заготовки с получением толстостенной гильзы, деформацию гильзы на оправке с...
Тип: Изобретение
Номер охранного документа: 0002677404
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1be

Антенная решетка свч с щелями переменной геометрии

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Антенная решетка СВЧ содержит дуговой волновод с вырезанными на внешней его стороне поперечными щелями. Длина щелей убывает по линейному или...
Тип: Изобретение
Номер охранного документа: 0002677496
Дата охранного документа: 17.01.2019
17.02.2019
№219.016.bbc6

Способ кучного выщелачивания золота

Изобретение относится к гидрометаллургии и может быть использовано при кучном выщелачивании золота из руд, концентратов и хвостов обогащения. Способ кучного выщелачивания золота включает обработку минерального сырья выщелачивающим раствором, окомкование, закладку окомкованной руды в штабель,...
Тип: Изобретение
Номер охранного документа: 0002680120
Дата охранного документа: 15.02.2019
Показаны записи 71-71 из 71.
27.12.2019
№219.017.f382

Установка для испытаний на кавитационную эрозию

Использование: для оценки кавитационной эрозионной стойкости сплавов, покрытий и других материалов, работающих в жидких средах с помощью ультразвуковой вибрации для генерации кавитации. Сущность изобретения заключается в том, что установка включает в себя ультразвуковой генератор,...
Тип: Изобретение
Номер охранного документа: 0002710480
Дата охранного документа: 26.12.2019
+ добавить свой РИД