×
25.08.2017
217.015.b1df

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ

Вид РИД

Изобретение

Аннотация: Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа, находящегося при температуре от 450 до 700°С, помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам одного из дисков подают напряжение постоянного тока в пределах 600-1500 мВ с подачей положительного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления метана из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в ячейку, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление метана, определяют концентрацию метана в азоте. Технический результат: обеспечение возможности просто и надежно измерять содержание метана в азоте. 4 ил.

Изобретение относится к области газового анализа, в частности к регистрации и измерению содержания метана в азоте, и может быть использовано для решения технологических задач, связанных в первую очередь с безопасностью технологического оборудования, в котором хранится и перерабатывается метан.

Создание в атмосфере технологического оборудования и емкостях инертной среды из смеси метана с азотом является самым надежным и проверенным способом предотвращения пожаров и взрывов при проведении различного рода работ в нефтегазовой промышленности.

Основными методами определения метана являются термохимический, интерференциальный и оптический. Причем термохимический метод позволяет анализировать метан только в газовой среде, где присутствует избыточное содержание воздуха (кислорода). В бескислородной среде, например в смеси метана с азотом или другим инертным газом, данный метод в принципе неработоспособен. А интерференциальный и оптический методы, основанные на поглощении метаном части спектра светового потока, позволяют определять метан в его смеси с инертным газом.

Принцип действия интерференциального газоанализатора описан в источнике (В.Г. Путилов, А.М. Петрова, Р.Ю. Толченкин «Газоанализатор для контроля метана, выделяющегося на поверхность земли при эксплуатации и ликвидации угольных шахт», семинар №23 симпозиума «Неделя горняка - 2007») [1]. Данный метод основан на избирательном поглощении инфракрасного излучения молекулами метана в области длины волны 3,2÷3,6 мкм, а в газоанализаторе для увеличения стабильности нуля, а также для компенсации возможного влияния влаги, пыли и других факторов, способных поглощать свет, использована автокомпенсационная двулучевая оптическая схема. В ней измеряется интенсивность двух лучей, проходящих по одному и тому же оптическому пути, причем длина волны одного - измерительного луча находится в области поглощения, а другого - опорного луча - в области, где поглощение отсутствует. Излучатели и фотоприемники, используемые в газоанализаторе, меняют параметры со временем, при изменениях температуры, а также в процессе старения. Для автокомпенсации этих изменений в оптическую схему введены еще два луча, не проходящие сквозь анализируемую газовую смесь. Способ аппаратурно сложен, трудоемок и требует квалифицированного обслуживания.

Оптический способ определения метана реализован в известном дистанционном обнаружителе метана (RU 2029287, опубл. 20.02.1995) [2]. Способ заключается в том, что излучение лазеров попеременно поступает на зеркала, с помощью которых делится на опорные и зондирующие пучки. Последние, пройдя через исследуемую область пространства, падают на топографический рассеиватель. Рассеянное назад излучение собирается телескопом и направляется на расположенный в его фокусе фотоприемник 7, подключенный к входу усилителя. Выход усилителя 9 подключен к входу аналого-цифрового преобразователя. Опорные пучки с помощью зеркал подаются на фотоприемник, подключенный к входу аналого-цифрового преобразователя, выходы которого подключены к входным цепям микро-ЭВМ. Зондирующие пучки, попеременно проходя через исследуемую область пространства, по-разному поглощаются метаном, в результате чего рассеянное назад топографическим рассеивателем излучение на этих длинах волн оказывается ослабленным по-разному. Это излучение, собранное телескопом, преобразуется с помощью фотоприемника в электрический сигнал, а затем после усиления преобразуется с помощью аналого-цифрового преобразователя в цифровой код.

Способ характеризуется сложным аппаратурным оформлением, трудоемкостью, необходимостью в квалифицированном обслуживающем персонале.

Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание метана в азоте.

Для решения поставленной задачи предложен электрохимический способ измерения концентрации метана в азоте, заключающийся в том, что в поток анализируемого газа, находящегося при температуре от 450 до 700°С, помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам одного из дисков подают напряжение постоянного тока в пределах 600-1500 мВ с подачей положительного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления метана из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в ячейку, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление метана, определяют концентрацию метана в азоте.

При подаче к электродам одного из дисков напряжения постоянного тока в пределах от 600-1500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод. В полости ячейки будет протекать процесс окисления метана накаченным в полость кислородом в соответствии с реакцией:

При достижении напряжения постоянного тока величины в пределах от 600-1500 мВ ток стабилизируется и перестает расти с ростом напряжения. Полученный ток является предельным током, а его величина обусловлена газообменом между анализируемой средой и газом в полости ячейки. Величина предельного тока ячейки лимитируется диффузионным барьером - капилляром и связана с концентрацией аммиака (Иванов-Шиц, И. Мурин, Ионика твердого тела, том 2, С.-Петербург (2010) СС. 964-965) уравнением (2):

где D(метан-инертный газ) - коэффициент диффузии аммиака в инертном газе;

X(метан) - мольная доля аммиака в инертном газе;

S - площадь сечения капилляра, мм2;

Р - общее давление газовой смеси, атм;

Т - температура анализа, К;

L - длина капилляра, мм.

В соответствии с уравнением (2) достаточно легко рассчитать содержание метана по измеренному значению предельного тока IL(метан - инертный газ).

При этом другой твердоэлектролитный диск с нанесенными на его противоположные поверхности электродами выполняет функцию контроля работоспособности электрохимической ячейки по величине ЭДС, которая в соответствии с уравнением (3) отражает изменение парциального давления кислорода внутри ячейки относительно парциального давления кислорода в анализируемом газовом потоке:

где Е - ЭДС ячейки, мВ;

R - универсальная газовая постоянная, равная 8,314 Дж/моль-К;

Т - температура, К;

4 - число электронов, участвующих в данной электродной реакции;

F - число Фарадея, равное 96500 Кл/моль;

Р(O2)1 - парциальное давление кислорода в полости ячейки;

Р(O2)2 - парциальное давление кислорода в потоке анализируемого газа.

Генерируемая величина ЭДС с одной стороны подтверждает, что на том диске с электродами, на который подвали напряжение, установился предельный ток - величина ЭДС при этом также стабилизируется, а также говорит о возможной разгерметизации электрохимической ячейки. При разгерметизации электрохимической ячейки ЭДС будет падать до нуля, т.к. отношение P(O2l)/P(O22) станет равно единице.

Новый технический результат, достигаемый заявленным способом, заключается в получении возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений.

Изобретение иллюстрируется чертежами, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 - зависимость тока диска с электродами, на который подают напряжение и ЭДС диска с электродами, с которого снимают ЭДС, от подаваемого напряжения для газа СН4(5%)+N2 при температуре 550°С; на фиг. 3 - зависимость предельного тока электрохимической ячейки от напряжения и концентрации СН4; на фиг. 4 - зависимость предельного тока электрохимической ячейки от концентрации метана.

Электрохимическая ячейка для реализации способа измерения метана в азоте состоит из двух дисков 1 и 2, выполненных из кислородпроводящего твердого электролита состава 0,9 ZrO2+0,1Y2O3. На противоположных поверхностях каждого из дисков 1 и 2 расположены по два наружных электрода 3 и 4 и по два внутренних электрода 5 и 6. Диски 1 и 2 соединены между собой газоплотным герметиком с образованием внутренней полости 7. Между дисками находится капилляр 8. Подачу напряжения на электроды 3 и 4 диска 1 осуществляют от источника напряжения постоянного тока, причем на внутренний электрод 4 подают плюс. Ток, возникающий в цепи ячейки, измеряется амперметром (А). Сама электрохимическая ячейка помещена в поток анализируемого газа, который омывает ее наружную поверхность и по капилляру 8 поступает во внутреннюю полость 7. Под действием напряжения постоянного тока, приложенного от источника (ИПТ) к электродам 3 и 4, через твердый кислородпроводящий электролит происходит накачка кислорода из анализируемого газа во внутреннюю полость ячейки 7. В полости 7 поступивший кислород взаимодействует с метаном. Образовавшиеся продукты взаимодействия, в соответствии с уравнениями (1-2), обмениваются через капилляр 8 с анализируемым газом. При этом капилляр 8 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При достижении приложенного напряжения величины в пределах 600-1500 мВ газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(метан - азот), который измеряют с помощью амперметра (А). Посредством уравнения (2) по величине измеренного IL(метан - азот) можно определить величину X(метан), т.е. концентрацию метана в азоте.

Таким образом, заявленный способ позволяет измерить содержание метана в азоте посредством амперометрической ячейки с кислородпроводящим твердым электролитом. Поскольку свойства инертных газов идентичны, заявленный способ может быть применен для измерения содержания метана в других инертных газах.

Электрохимический способ измерения концентрации метана в азоте, заключающийся в том, что в поток анализируемого газа, находящегося при температуре от 450 до 700°С, помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам одного из дисков подают напряжение постоянного тока в пределах 600-1500 мВ с подачей положительного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления метана из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в ячейку, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление метана, определяют концентрацию метана в азоте.
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 106.
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.748c

Батарея твердооксидных топливных элементов

Изобретение относится к батарее твердооксидных топливных элементов, состоящей из узла подачи воздуха, включающего фланец со штуцером с калиброванной шайбой, рассекатель потока воздуха, средний фланец с отверстиями для установки трубок с уплотнениями для подачи воздуха в топливные элементы;...
Тип: Изобретение
Номер охранного документа: 0002597873
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
Показаны записи 51-60 из 75.
13.01.2017
№217.015.748c

Батарея твердооксидных топливных элементов

Изобретение относится к батарее твердооксидных топливных элементов, состоящей из узла подачи воздуха, включающего фланец со штуцером с калиброванной шайбой, рассекатель потока воздуха, средний фланец с отверстиями для установки трубок с уплотнениями для подачи воздуха в топливные элементы;...
Тип: Изобретение
Номер охранного документа: 0002597873
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
+ добавить свой РИД