×
25.08.2017
217.015.b12d

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ЗАГРЯЗНЕННОГО СЫРЬЯ ДЛЯ РАЗДЕЛИТЕЛЬНОГО ПРОИЗВОДСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении концентрации изотопов U, U, U путем переработки гексафторида урана загрязненного сырья в двойном каскаде газовых центрифуг. Гексафторид урана загрязненного сырья перерабатывают в двойном каскаде газовых центрифуг, предназначенных для получения низкообогащенного гексафторида U из чистого гексафторида урана, подаваемого на основное питание первого каскада, загрязненное сырье подают на дополнительное питание первого каскада. Очищенное сырье отбирают из первого или второго каскада. Изобретение позволяет получить качественное сырье с допустимым содержанием лимитирующих вредных изотопов. 5 з.п. ф-лы, 5 ил., 8 табл., 4 пр.

Изобретение относится к ядерному топливному циклу и может быть использовано при производстве топлива ядерных реакторов, а именно при получении низкообогащенного урана (НОУ) для топлива атомных станций. Более конкретно, изобретение относиться к переработке в процессе производства НОУ загрязненного сырья, например загрязненного природного урана, регенерированного урана или ранее образовавшихся отвалов, загрязненных по тем или иным причинам вредными изотопами урана, с целью очистки таких отвалов от вредных изотопов и расширения сырьевой базы разделительного производства.

Ядерное топливо для АЭС производят путем обогащения гексафторида урана на разделительных каскадах обогатительных заводов. Современные обогатительные заводы используют для обогащения урана каскады газовых центрифуг. Под термином «каскад» здесь и далее авторы подразумевают внешнюю схему построения взаимосвязанных разделительных элементов (одну центрифугу или группу газовых центрифуг, в свою очередь, объединенных в каскадные схемы), в которую подается обрабатываемое сырье (питание) и из которой выводятся получаемые продукты (отбор). Каскады промышленных разделительных заводов имеют различные схемы построения взаимосвязей разделительных элементов в зависимости от решаемых производственных задач, экономической целесообразности и функциональных возможностей используемых разделительных элементов. В качестве питания на каскад может поступать гексафторид, содержащий природный уран с концентрацией 235U 0,711%, или обедненный уран - отвальный продукт разделительного процесса с концентрацией 235U 0,1÷0,4%, или слегка обогащенный (а возможно, и обедненный) уран - регенерат облученного урана, прошедшего переработку и очистку на радиохимическом заводе. Каскады разделительного завода могут иметь несколько точек питания для подачи гексафторида урана с различной концентрацией 235U и несколько точек для отбора продукта с различной степенью обогащения по 235U [Синев Н.М. Экономика ядерной энергетики: Основы технологии и экономики производства ядерного топлива. Экономика АЭС. М.: Энергоатомиздат, 1987]. Под термином «концентрация» здесь и далее авторы подразумевают массовую долю того или иного изотопа урана именно в смеси изотопов урана.

Использование обогащенного урана в ядерной энергетике с реакторами на тепловых нейтронах сопровождается непрерывным процессом накопления запасов обедненного урана с содержанием 0,1÷0,5%, которые одновременно являются бедным исходным сырьем (по сравнению с природным ураном) для процесса восстановления природного урана или получения НОУ. Однако часть полученных в различных производственных процессах отвалов или природного сырья может быть загрязнена вредными изотопами 232U, 234U, 236U, что приводит при их использовании к повышению содержания вредных изотопов в получаемом из такого сырья НОУ. Повышение концентрации вредного изотопа 232U приводит к затруднениям при дальнейшем изготовлении ядерного топлива (порошка, таблеток, твэлов) из-за мощного и вредного излучения продуктов его распада. Повышение концентрации вредного изотопа 234U приводит к затруднениям при дальнейшем изготовлении ядерного топлива (порошка, таблеток, твэлов) из-за загрязнения воздуха в рабочем помещении поверхностей рабочего помещения вредными альфа-частицами. Повышение концентрации вредного изотопа 236U приводит к повышению паразитного захвата нейтронов в ядерном реакторе и, в свою очередь, требует повышения концентрации делящегося изотопа 235U, что ухудшает экономические показатели ядерного реактора.

Независимо от способа получения НОУ его технические характеристики по вредным изотопам 232U, 234U, 236U должны соответствовать требованиям стандартной спецификации ASTM С996-10 [Стандартные технические условия на гексафторид урана с обогащением менее 5% по изотопу 235U, ASTM С996-10], что создает дополнительные трудности и затраты при использовании загрязненного сырья в процессе получения ядерного топлива.

Настоящее изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получения восстановленного природного урана или НОУ для ядерного топлива АЭС.

Известен способ очистки загрязненного сырья, используемый в процессе получения гексафторида низкообогащенного урана из оружейного высокообогащенного урана [патент RU №2225362, C01G 43/06, 2001.06.13], в котором содержание минорных (вредных) изотопов в высокообогащенном уране уменьшают в каскаде газовых центрифуг одновременно с очисткой высокообогащенного урана от химических примесей. Параметры каскада газовых центрифуг, необходимые для уменьшения содержания вредных изотопов в ВОУ, определяют по известным методикам расчетов процессов разделения многокомпонентных изотопных смесей.

Недостатки этого способа, кроме необходимости уменьшения содержания вредных изотопов в ВОУ на отдельном каскаде газовых центрифуг, связаны с необходимостью предотвращения самопроизвольной ядерной реакции гексафторида ВОУ в каскаде газовых центрифуг, а также с концентрированием в отборе этого каскада большого количества радиоактивного изотопа 234U, что требует разработки специальных мер радиационной безопасности и затрудняет дальнейшую переработку и хранение полученного продукта.

Известен способ очистки загрязненного сырья, используемый в процессе для изотопного восстановления регенерированного урана (патент RU №2236053, G21C 19/42, B01D 59/20, 2002.11.04), заключающийся в повышении содержания изотопа 235U в регенерированном уране до 2,0÷7,0 мас. % при снижении абсолютной и относительной концентрации изотопов 232U, 234U, 236U, в котором используют прямое обогащение сырьевого уранового регенерата в изотопно-разделительном газоцентрифужном каскаде и разбавление гексафторида регенерированного урана гексафторидом урана природного происхождения. При этом сырьевой урановый регенерат обогащают изотопом 235U до 10,0÷90,0 мас. %, после чего разбавляют ураном природного происхождения до массы, не превышающей массу сырьевого уранового регенерата.

Использование в процессе высоких степеней обогащения накладывает дополнительные трудности на осуществление технологии, а применение разбавления приводит к потерям работы разделения и эффективности процесса.

Известен способ очистки загрязненного сырья, используемый в процессе для изотопного восстановления регенерированного урана (патент RU №2242812, G21C 19/42, B01D 59/20, 2002.12.17), в котором сырьевой урановый регенерат обогащают до ВОУ, повышая содержание изотопа 235U до уровня 21,0÷90,0% в двойном газоцентрифужном каскаде, и снижают концентрацию изотопа 235U разбавителем до уровня 2,0÷7,0%, получая НОУ для топливного материала ядерных реакторов. Наработку разбавителя, например, из гексафторида урана природного происхождения выполняют параллельно в ординарном газоцентрифужном каскаде, подавая на питание гексафторид урана с концентрацией изотопа 235U 0,711% и получая на выходе поток отбора, содержащий 2,0÷5,0% 235U, и поток отвала, содержащий 0,1÷0,3% 235U.

Недостатком способа являются: использование высоких степеней обогащения, дополнительные затраты работы разделения на получение разбавителя с требуемым содержанием 235U и изотопов 232U, 234U, 236U, а также потери при смешении. Кроме того, если концентрации вредных изотопов имеют в регенерате повышенный уровень, то снизить их содержание до требуемого уровня не удается.

Наиболее близким к изобретению является способ очистки загрязненного уранового сырья в газоцентрифужном каскаде (патент RU №2377674, G21C 19/42, C01G 43/06, B01D 59/20, 2008.10.06), в котором очищаемый продукт подается на одно из двух питаний каскада и отбирается со снижением концентрации 232U, 234U, 236U в промежуточном отборе. Для этого на второе питание каскада поступает гексафторид природного урана с содержанием 235U 0,711% и 234U меньше 0,0058% (верхний предел по ASTM С 787-11), из которого в конечном отборе получают товарный продукт низкообогащенного урана Способ характеризуется практическим отсутствием затрат работы разделения на очистку и возможностью повышения концентрации 235U в очищенном продукте до 0,711÷1,5%.

Недостатком способа являются загрязнение гексафторида низкообогащенного урана, получаемого в конечном отборе каскада, и необходимость промежуточного отбора, организация которого на практике связана с большими техническими трудностями, а порой и просто невозможна на действующем газоцентрифужном заводе.

Настоящее изобретение направлено на решение задачи снижения затрат на наработку очищенного сырья с требуемым качеством по содержанию вредных изотопов урана без использования промежуточных отборов каскадов.

Технический результат, достигаемый при осуществлении способа, заключается в получении качественного сырья с допустимым содержанием лимитирующих вредных изотопов и, тем самым, в расширении сырьевой базы разделительных производств при отсутствии затрат работы разделения для его наработки.

Поставленная задача решается благодаря тому, что в способе очистки загрязненного сырья для разделительного производства от вредных изотопов, заключающемся в снижении концентрации изотопов 232U, 234U, 236U путем переработки гексафторида урана загрязненного сырья в двойном каскаде газовых центрифуг, гексафторид урана загрязненного сырья перерабатывают в двойном каскаде газовых центрифуг, предназначенном для получения низкообогащенного гексафторида 235U из чистого гексафторида урана, подаваемого на основное питание первого каскада, загрязненное сырье подают на дополнительное питание первого каскада, а очищенное сырье отбирают из второго каскада.

Дополнительно, в способе низкообогащенный гексафторид 235U получают в первом каскаде.

Кроме того, в способе низкообогащенный гексафторид 235U получают во втором каскаде.

Кроме того, в способе чистый гексафторид урана подают на дополнительное питание второго каскада.

Дополнительно, в способе питание второго каскада выполняют после десублимации отвала первого каскада.

Кроме того, в способе питание второго каскада выполняют после десублимации отбора первого каскада.

Дополнительно, в способе в качестве чистого гексафторида урана используют гексафторид природного урана.

Кроме того, в способе в качестве чистого гексафторида урана используют гексафторид урана отвала разделительного производства, полученный при обогащении природного урана.

Дополнительно, в способе в качестве чистого гексафторида урана используют гексафторид урана, полученный обогащением отвалов разделительного производства, полученных при обогащении природного урана.

Сущность изобретения поясняется рисунками, на которых:

На фиг. 1 показана схема известного ординарного изотопно-разделительного газоцентрифужном каскада для получения НОУ.

На фиг. 2 показана схема двойного изотопно-разделительного газоцентрифужного каскада для получения НОУ в отборе первого каскада.

На фиг. 3 показана схема двойного изотопно-разделительного газоцентрифужного каскада для получения НОУ в отборе второго каскада.

На фиг. 4 показана схема последовательной работы двойного изотопно-разделительного газоцентрифужного каскада для получения НОУ в отборе первого каскада.

На фиг. 5 показана схема последовательной работы двойного изотопно-разделительного газоцентрифужного каскада для получения НОУ в отборе второго каскада.

В известном способе получения НОУ по схеме, показанной на фиг. 1, в ординарном каскаде 1 на его вход подается поток 2 питания сырья, например, из гексафторида природного урана. На вход каскада может подаваться поток 5 дополнительного питания. В результате взаимодействия соединенных между собой внутри каскада разделительных элементов (в виде центрифуг или групп газовых центрифуг) подаваемый на вход каскада 1 поток питания 2 разделяется на выходе из каскада 1 на более обогащенный нужным изотопом поток отбора 3 и на обедненный нужным изотопом поток отвала 4 гексафторида урана. Полученный из потока 3 в отборе каскада 1, настроенного на обогащение изотопом 235U до заданной концентрации в диапазоне 2÷5%, НОУ десублимируют, затаривают в контейнер 6 и отправляют заказчику для изготовления ядерного топлива. Поток 4 отвала с концентрацией 235U 0,1÷0,3% десублимируют, затаривают в контейнер 7 и направляют на хранение.

В заявленном способе очистки в двойном каскаде по схеме, показанной на фиг. 2, на вход первого каскада 8 подается поток 9 питания, например, в виде переведенного в газовую фазу гексафторида природного урана с концентрацией 235U, равной 0,711%, и поток 10 гексафторида урана загрязненного отвала с концентрацией 235U 0,1÷0,4%. На выходе первого каскада 8 получают два потока: поток 11 отбора НОУ, аналогичный потоку 3 известного каскада 1, и поток 12 промежуточного отвала каскада 8, который подается на вход второго каскада 13. В отборе каскада 13 получают поток 14, очищенный от вредных изотопов урана, и поток отвала 15, аналогичный потоку 4 известного каскада 1. Полученный в потоке 14 очищенный отвал с концентрацией 235U, аналогичной концентрации 235U в потоке 10 питания каскада 8, десублимируют и затаривают в контейнер 16 для последующего использования в качестве очищенного сырья в наработке НОУ и переработке ВОУ. Полученный из потока 11 в основном отборе каскада 8, настроенного на обогащение 235U до заданной концентрации в диапазоне 2÷5%, НОУ десублимируют, затаривают в контейнер 17 и отправляют заказчику для изготовления ядерного топлива. Поток 15 отвала с концентрацией 235U 0,1÷0,3% десублимируют, затаривают в контейнер 18 и направляют на хранение.

В варианте заявленного способе очистки в двойном каскаде по схеме, показанной на фиг. 3, на вход первого каскада 19 подается поток 20 питания, например, в виде переведенного в газовую фазу гексафторида природного урана с концентрацией 235U, равной 0,711%, и поток 21 гексафторида урана загрязненного отвала с концентрацией 235U 0,1÷0,4%. На выходе первого каскада 19 получают два потока: поток 22 отвала, аналогичный потоку 4 известного каскада 1, и поток 23 промежуточного отбора каскада 19, который подается на вход второго каскада 24. На выходе каскада 24 получают поток отвала 25, очищенный от вредных изотопов урана, и поток отбора 26 НОУ, аналогичный потоку 3 известного каскада 1. Полученный в потоке 25 очищенный отвал с концентрацией 235U, аналогичной концентрации 235U в потоке 21 питания каскада 19, десублимируют и затаривают в контейнер 27 для последующего использования в качестве очищенного сырья в наработке НОУ и переработке ВОУ. Полученный из потока 26 в основном отборе каскада 24, настроенного на обогащение 235U до заданной концентрации в диапазоне 2÷5%, НОУ десублимируют, затаривают в контейнер 28 и отправляют заказчику для изготовления ядерного топлива. Поток 22 отвала с концентрацией 235U 0,1÷0,3% десублимируют, затаривают в контейнер 29 и направляют на хранение. При использовании данной схемы на дополнительное питание второго каскада 24 может подаваться поток чистого гексафторида урана (этот поток на фиг. 3 обозначен пунктирной стрелкой).

В варианте осуществления заявленного способе очистки в двойном каскаде по схеме, показанной на фиг. 4, на вход первого каскада 8 подается поток 9 питания, например, в виде переведенного в газовую фазу гексафторида природного урана с концентрацией 235U, равной 0,711%, и поток 10 гексафторида урана загрязненного отвала с концентрацией 235U 0,1÷0,4%. На выходе первого каскада 8 получают два потока: поток 11 отбора НОУ, аналогичный потоку 3 известного каскада 1, и поток 12 промежуточного (межкаскадного) отвала каскада 8. Полученный из потока 11 в основном отборе каскада 8, настроенного на обогащение 235U до заданной концентрации в диапазоне 2÷5%, НОУ десублимируют, затаривают в контейнер 17 и отправляют заказчику для изготовления ядерного топлива. Поток промежуточного (межкаскадного) отвала 12 десублимируют и затаривают в контейнер 30. После завершения работы первого каскада 8 из него формируют второй каскад 13 с соответствующими параметрами. Затем контейнер 30 подключают к входу второго каскада 13 и в виде потока 31 из переведенного в газовую фазу гексафторида урана промежуточного отвала, ранее полученного в первом каскаде 8, подают в каскад 13. В отборе каскада 13 получают поток 14, очищенный от вредных изотопов урана, и поток отвала 15, аналогичный потоку 4 известного каскада 1. Полученный в потоке 14 очищенный отвал с концентрацией 235U, аналогичной концентрации 235U в потоке 10 питания каскада 8, десублимируют и затаривают в контейнер 16 для последующего использования в качестве очищенного сырья в наработке НОУ и переработке ВОУ. Поток 15 отвала с концентрацией 235U 0,1÷0,3% десублимируют, затаривают в контейнер 18 и направляют на хранение. В этом варианте реализации способа осуществляется последовательная работа двойного каскада: на первом этапе полностью выполняется работа разделения первого каскада 8; затем первый каскад 8 перестраивается во второй каскад 13; на втором этапе разделительной работы завершается доработка продуктов на каскаде 13.

В варианте заявленного способе очистки в двойном каскаде по схеме, показанной на фиг. 5, на вход первого каскада 19 подается поток 20 питания, например, в виде переведенного в газовую фазу гексафторида природного урана с концентрацией 235U, равной 0,711%, и поток 21 гексафторида урана загрязненного отвала с концентрацией 235U 0,1÷0,4%. На выходе первого каскада 19 получают два потока: поток 22 отвала, аналогичный потоку 4 известного каскада 1, и поток 23 промежуточного отбора каскада 19. Поток 22 отвала с концентрацией 235U 0,1÷0,3% десублимируют, затаривают в контейнер 29 и направляют на хранение. Поток промежуточного (межкаскадного) отбора 23 десублимируют и затаривают в контейнер 32. После завершения работы первого каскада 19 из него формируют второй каскад 24 с соответствующими параметрами. Затем контейнер 31 подключают к входу второго каскада 24 и в виде потока 33 из переведенного в газовую фазу гексафторида урана промежуточного отбора, ранее полученного в первом каскаде 19, подают в каскад 24. На выходе каскада 24 получают поток 25 отвала, очищенный от вредных изотопов урана, и поток отбора 26 НОУ, аналогичный потоку 3 известного каскада 1. Полученный в потоке 25 очищенный отвал с концентрацией 235U, аналогичной концентрации 235U в потоке 21 питания каскада 19, десублимируют и затаривают в контейнер 27 для последующего использования в качестве очищенного сырья в наработке НОУ и переработке ВОУ. Полученный из потока 26 в основном отборе каскада 24, настроенного на обогащение 235U до заданной концентрации в диапазоне 2÷5%, НОУ десублимируют, затаривают в контейнер 28 и отправляют заказчику для изготовления ядерного топлива. В этом варианте реализации способа осуществляется последовательная работа двойного каскада: на первом этапе полностью выполняется работа разделения первого каскада 19; затем первый каскад 19 перестраивается во второй каскад 24; на втором этапе разделительной работы завершается доработка продуктов на каскаде 24. При использовании данной схемы на дополнительное питание второго каскада 24 может подаваться поток чистого гексафторида урана в виде потока 34.

Осуществимость заявленного способа очистки загрязненного отвала разделительного производства от вредных изотопов и достигаемый при осуществлении заявленного способа технический результат подтверждаются нижеприведенными примерами.

Пример 1. Наработка НОУ с концентрацией 235U 3,6% в известном способе по схеме, показанной на фиг. 1.

В качестве примера «плановой» наработки НОУ выберем режим с подачей природного сырья (поток 2) в виде 100 т гексафторида урана с концентрацией 235U, равной 0,711%, в ординарный каскад 1 (табл. 1). Содержание 234U в природном сырье принято по верхнему пределу ASTM. Отборная концентрация 235U (поток 3) задана 3,6%, отвала (поток 4) - 0,1%. Дополнительное питание (поток 5) отсутствует.

Полученный отбор НОУ с концентрацией 235U 3,6% характеризуется типичным «запасом» по нормам ASTM для 234U - 0,032% по сравнению с 0,036%.

Пример 2. Очистка загрязненного отвала от U-234 и U-236 по схеме, показанной на фиг. 2.

В табл. 2 и 3 даны параметры схемы очистки, показанной на фиг. 2, рассчитанной из условия обеспечения «плановой» наработки НОУ (поток 17) и очистки 20 т отвального загрязненного гексафторида урана (поток 10) с содержанием 235U 0,38%. Концентрация 234U в нем принята равной типичному значению - 0,00196%, а концентрация 236U взята по верхнему пределу - 0,0075%.

Содержание 234U в очищенном сырье получилось заметно меньше, чем в исходном загрязненном сырье - 0,00149% по сравнению с 0,00196%. То же касается и концентрации 236U - 0,00173% вместо 0,0075%. По сравнению с базовым вариантом в НОУ концентрация 234U несколько увеличилась - с 0,0321 до 0,0325%, и появился 236U. Однако его содержание допустимо и на порядок меньше, чем по ASTM - 0,003% по сравнению с 0,025%.

Таким образом, очистка загрязненного сырья для разделительного производства в приведенном примере 2 по заявленному способу выполнена без затраты работы разделения и осуществлена в процессе плановой наработки НОУ.

Пример 3. Очистка загрязненного сырья от U-234 и U-236 по схеме на фиг. 3.

В табл. 4 и 5 приведены результаты расчета схемы очистки, показанной на фиг. 3 при таких же исходных данных, как в рассмотренной схеме, показанной на фиг. 2 (табл. 2, 3). При одинаковых суммарных затратах работы разделения концентрации 234U и 236U в очищенном отвале с 235U 0,38% получились несколько ниже, чем в схеме, показанной на фиг. 2. Это объясняется большим проникновением 234U и 236U в НОУ и отвал.

Улучшение качества очистки по 236U в сравнении со схемой на фиг. 2 позволяет производить из очищенного отвала не только НОУ, но и качественный разбавитель для ВОУ.

Таким образом, очистка загрязненного сырья для разделительного производства в приведенном примере 3 по заявленному способу выполнена без затраты работы разделения и осуществлена в процессе плановой наработки НОУ.

Для вариантов осуществления способа в схемах каскадов, показанных на фиг. 4 и фиг. 5, действительны приведенные выше примеры реализации способа. Дополнительные затраты в этих вариантах возникнут только на перестройку одного каскада из первого каскада во второй каскад. При соответствующей схеме одного каскада затраты на его перестройку незначительны по сравнению с выигрышем в работе разделения на очистку сырья.

Пример 4. Очистка загрязненных отвалов от U-234 по схеме на фиг. 5.

Очистку отвалов можно проводить при совмещении с различными «плановыми» режимами наработки НОУ, например, с концентрацией 235U 3,6%. В таблице 6 приведены параметры такой наработки НОУ, выбранной в качестве варианта примера для совмещения с очисткой отвала. «Плановый» режим характеризуется получением НОУ по схеме, показанной на фиг. 1, из природного сырья (поток 2) 100 т UF6 с 0,711% 235U. Содержание 234U в природном сырье принято по верхнему пределу ASTM. Отборная концентрация 235U задана 3,6% (поток 3), отвала - 0,2% (поток 4). Дополнительное питание (поток 5) отсутствует.

Полученный отбор НОУ с концентрацией 235U 3,6% характеризуется типичным «запасом» по нормам ASTM для 234U - 0,03436% по сравнению с 0,036%.

В табл. 7 и 8 показаны параметры двух каскадов 19 и 24 по схеме, показанной на фиг. 5, рассчитанных из условия обеспечения той же самой «плановой» наработки НОУ и одновременной очистки 48,638 т отвального гексафторида урана с содержанием 235U 0,32%.

Эффективная работа разделения каскадов 19 и 24 соответствуют «плановой» наработке НОУ - 57,290 тыс. ЕРР. В результате очистки содержание 234U в отвале 0,32% 235U снижается до 0,001384% (в исходном отвале 0,00148%). Это происходит за счет небольшого увеличения 234U в НОУ - 0,03440% (вместо 0,03436% при отдельной наработке НОУ в каскаде 1) и его возрастания в отвале - 0,000791% (вместо 0,000749% в каскаде 1).

Применение рассмотренных схем очистки имеет высокую эффективность. С их помощью можно расширить сырьевую базу гексафторида урана:

- за счет очистки загрязненных отвалов по 236U, и сократить затраты работы разделения на наработку разбавителя для ВОУ;

- за счет улучшения качества отвалов по 234U. Кроме того, можно производить очистку грязного природного сырья, в котором содержание 234U превышает нормы ASTM.

Понятно, что изобретение не ограничивается приведенными примерами. Возможны и другие варианты примеров в пределах объема предложенной формулы изобретения.


СПОСОБ ОЧИСТКИ ЗАГРЯЗНЕННОГО СЫРЬЯ ДЛЯ РАЗДЕЛИТЕЛЬНОГО ПРОИЗВОДСТВА
СПОСОБ ОЧИСТКИ ЗАГРЯЗНЕННОГО СЫРЬЯ ДЛЯ РАЗДЕЛИТЕЛЬНОГО ПРОИЗВОДСТВА
СПОСОБ ОЧИСТКИ ЗАГРЯЗНЕННОГО СЫРЬЯ ДЛЯ РАЗДЕЛИТЕЛЬНОГО ПРОИЗВОДСТВА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 215.
22.06.2019
№219.017.8e50

Проволока для сварки среднеуглеродистых среднелегированных броневых сталей

Изобретение может быть использовано для получения сварных соединений из среднеуглеродистых среднелегированных броневых сталей. Сварочная проволока содержит компоненты в следующем соотношении, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо –...
Тип: Изобретение
Номер охранного документа: 0002692145
Дата охранного документа: 21.06.2019
10.07.2019
№219.017.aaad

Агрегат газовых центрифуг

Изобретение относится к газовым центрифугам для разделения смесей газов и изотопных смесей и, в частности, к конструкции агрегатов газовых центрифуг, установленных на опорных рамах, например, промышленных групп газовых центрифуг заводов по разделению изотопов урана или многоагрегатных стендов...
Тип: Изобретение
Номер охранного документа: 0002288041
Дата охранного документа: 27.11.2006
17.07.2019
№219.017.b528

Инструментальный материал на основе карбидов

Изобретение относится к твердым и износостойким металлокерамическим инструментальным материалам на основе карбидов вольфрама, титана, тантала с цементирующей карбиды кобальтовой связкой. Зерна карбидов имеют сферическую форму размером от 0,1 до 1 мкм. Каждое зерно карбида окружено прослойкой...
Тип: Изобретение
Номер охранного документа: 0002694444
Дата охранного документа: 15.07.2019
23.07.2019
№219.017.b7ff

Способ контроля температуры монолитного бетона в перекрытии при его выдерживании и устройство для его осуществления

Способ и устройство для его осуществления относятся к области строительства и могут быть использованы для контроля температуры монолитного бетона в монолитных и сборно-монолитных перекрытиях зданий при его выдерживании. Технический результат - повышение точности измерений температуры наружной...
Тип: Изобретение
Номер охранного документа: 0002695177
Дата охранного документа: 22.07.2019
26.07.2019
№219.017.b937

Способ контроля геометрических параметров резьбы

Настоящее изобретение относится к средствам контрольно-измерительной техники, а именно к способам контроля геометрических параметров профиля поверхности, в частности резьбы труб, замковых муфт и подобных изделий, включающих резьбу. Способ контроля геометрических параметров резьбы предполагает...
Тип: Изобретение
Номер охранного документа: 0002695599
Дата охранного документа: 24.07.2019
02.08.2019
№219.017.bb5d

Способ извлечения урана из подземной урансодержащей воды

Изобретение относится к галургии урана, в частности, для извлечения урана из подземных урансодержащих вод. Проводят динамическую сорбцию урана на гранулируемом сорбенте, содержащем фосфогипс и шунгит. Используют подземную урансодержащую воду с концентрацией урана 632,1 мкг/дм, в качестве...
Тип: Изобретение
Номер охранного документа: 0002696165
Дата охранного документа: 31.07.2019
02.08.2019
№219.017.bb62

Интеллектуальный преобразователь

Изобретение относится к электронной технике, в частности к технологии изготовления тензорезисторных преобразователей давления. В интеллектуальный преобразователь введен узел, отвечающий за динамическую коррекцию установочных параметров на основе измеряемого преобразователем давления....
Тип: Изобретение
Номер охранного документа: 0002696068
Дата охранного документа: 30.07.2019
23.08.2019
№219.017.c2db

Способ монтажа сборной части ригеля и монтажное приспособление для его осуществления

Изобретение к области строительства, в частности к способу монтажа ригеля и приспособлению для его монтажа. Технический результат заключается в повышении технологической надежности процесса монтажа. Способ монтажа сборной части ригеля включает установку ригеля на монтажные столики, закрепление...
Тип: Изобретение
Номер охранного документа: 0002697985
Дата охранного документа: 21.08.2019
27.08.2019
№219.017.c3de

Способ прокатки в валках с волнообразным профилем бочки

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке литых слябов в черновых клетях листопрокатного стана горячей прокатки. Способ включает прокатку в два прохода, в первом проходе осуществляется обжатие заготовки высотой h в валках с волнообразным...
Тип: Изобретение
Номер охранного документа: 0002698241
Дата охранного документа: 23.08.2019
02.09.2019
№219.017.c5ed

Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка

Изобретение может быть использовано в гальванотехнике при утилизации хромсодержащих стоков. Способ извлечения хрома (VI) из хромсодержащих растворов гальванических производств с получением малообводненного железо-хромсодержащего осадка включает введение в хромсодержащий раствор...
Тип: Изобретение
Номер охранного документа: 0002698810
Дата охранного документа: 30.08.2019
Показаны записи 81-87 из 87.
09.05.2019
№219.017.4a74

Устройство для измерения внутреннего диаметра тонкостенной цилиндрической детали

Устройство выполнено в виде емкостного датчика, образованного двумя изолированными плоскими токопроводящими кольцами. Кольца концентрично установлены в корпусе из изоляционного материала и раздвинуты одно от другого в осевом направлении. Нижнее кольцо предназначено для установки на него торца...
Тип: Изобретение
Номер охранного документа: 0002272989
Дата охранного документа: 27.03.2006
09.05.2019
№219.017.4a7e

Шахтная электрическая печь сопротивления

Изобретение относится к области электротермического оборудования, а именно к шахтным электрическим печам сопротивления периодического действия для термообработки деталей в контролируемой атмосфере. Для повышения производительности печи, расширения области ее применения и повышения удобства...
Тип: Изобретение
Номер охранного документа: 0002278170
Дата охранного документа: 20.06.2006
09.05.2019
№219.017.4acc

Промышленная группа газовых центрифуг

Изобретение относится к ядерной технике и может быть использовано на заводах по разделению радиоактивных и стабильных изотопов, расположенных в зонах с сейсмической активностью. Промышленная группа газовых центрифуг выполнена из ряда колонн 1, установленных на фундаменте 2, соединенных ригелями...
Тип: Изобретение
Номер охранного документа: 0002280495
Дата охранного документа: 27.07.2006
09.05.2019
№219.017.4b3b

Демпфирующий узел

Изобретение относиться к машиностроению и может быть использовано в вертикальных роторах быстровращающихся машин и приборов. Демпфирующий узел опоры вертикального ротора содержит корпус с полостью, заполненной вязкой жидкостью, и погруженный в нее протяженный в вертикальном направлении...
Тип: Изобретение
Номер охранного документа: 0002292500
Дата охранного документа: 27.01.2007
29.06.2019
№219.017.99c3

Устройство для термоправки одногофровых сильфонов

Изобретение относится к технологии изготовления сильфонов, в частности к устройствам для правки геометрических размеров и формы сильфонов, применяемой при термической обработке. Устройство для термоправки одногофровых сильфонов за счет различия коэффициентов линейного расширения оправки и...
Тип: Изобретение
Номер охранного документа: 0002277131
Дата охранного документа: 27.05.2006
29.06.2019
№219.017.9c91

Газовая центрифуга (варианты)

Изобретение относится к надкритическим центрифугам для разделения газов и изотопных смесей. Центрифуга содержит вертикальный ротор с верхней и нижней концевыми крышками, систему трубопроводов для ввода газа в ротор и вывода газа из ротора и электропривод для приведения ротора во вращение. Ротор...
Тип: Изобретение
Номер охранного документа: 0002394636
Дата охранного документа: 20.07.2010
10.07.2019
№219.017.aaad

Агрегат газовых центрифуг

Изобретение относится к газовым центрифугам для разделения смесей газов и изотопных смесей и, в частности, к конструкции агрегатов газовых центрифуг, установленных на опорных рамах, например, промышленных групп газовых центрифуг заводов по разделению изотопов урана или многоагрегатных стендов...
Тип: Изобретение
Номер охранного документа: 0002288041
Дата охранного документа: 27.11.2006
+ добавить свой РИД