×
25.08.2017
217.015.b0de

Результат интеллектуальной деятельности: СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции. Сущность: осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения K.Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия. Технический результат: возможность установления состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах. 2 табл., 2 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции.

Известно изобретение «Способ диагностики трещинообразования в металлоконструкциях» (RU 2356034 С2, МПК G01N 21/88, G01N 3/32, опубл. 20.05.2009), в котором определяют наиболее вероятные места разрушения металлоконструкции и подготавливают в этих местах контрольные площадки. Затем исследуют поверхности контрольных площадок и определяют степень поврежденности. Причем на поверхность этих площадок наносят две и более реперные линии вблизи концентратора напряжений параллельно предполагаемому развитию трещины на одинаковом расстоянии друг от друга. Последовательно через заданное число циклов проводят ряд проверок диагностируемой металлоконструкции: производят измерение расстояния между реперными линиями и определяют степень поврежденности узла исследуемой металлоконструкции по изменению расстояния между указанными линиями.

Недостаток изобретения - невыполнимость диагностирования труднодоступных участков, например внутренних поверхностей металлических труб.

Известно изобретение «Способ контроля целостности трубопроводов циркуляционного контура ядерного реактора» (RU 2208848 С1, МПК G21C 17/017, G01N 23/00, опубл. 20.07.2003), в котором измерение параметров и контроль за процессом образования трещин и определение их месторасположения осуществляют с помощью датчиков γ-излучения. Эти датчики располагают относительно друг друга на диаметрально противостоящих друг другу внешних поверхностях трубопроводов, а измерение параметров трещин и их координат ведут одновременно в процессе перемещения датчиков по наружной поверхности трубопровода. При этом наличие трещины на внутренней поверхности трубопровода определяют по совпадению знаков скоростей изменения активностей, измеренных на диаметрально расположенных внешних поверхностях трубопроводов. Глубину, ширину, протяженность и форму трещины находят по отношению скорости изменения уровня активности излучения, измеренной со стороны внутренней трещины, к скорости изменения уровня активности на диаметрально расположенной стороне трубопровода. Координаты трещин фиксируют по местоположению датчиков излучения на оси трубопровода и углу их поворота от начального положения.

Недостатком изобретения является невозможность прогнозирования дальнейшего роста трещины и установления состояния предразрушения конструкции.

Наиболее близким, принятым за прототип, является изобретение «Способ определения начала разрушения» (RU 2234073 С2, МПК G01N 3/00, опубл. 10.08.2004), в котором деформируют образец материала и регистрируют момент начала разрушения. При этом регистрируют максимальную температуру на рабочем участке образца материала, строят графическую зависимость изменения максимальной температуры от степени деформации, а момент начала разрушения устанавливают по понижению температуры образца материала на стадии предразрушения.

Недостаток изобретения - невозможность применения для материалов, работающих в нестационарных тепловых режимах.

Задача изобретения - установление состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах.

Поставленная задача достигается тем, что в заявленном способе осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения Kс.п.. Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия.

Длительно действующие циклически изменяющиеся напряжения и деформации, возникающие при пусках, остановах, резких изменениях режимов приводят к изменению структуры материала конструкционного изделия, его состояния, механических свойств и сопровождаются образованием микротрещин. Эти микротрещины могут как останавливаться в своем развитии, так и увеличиваться, приводя к потере сплошности, разупрочнению и возникновению состояния предразрушения, которое может спровоцировать разрушение конструкции (отказ).

Причиной наступления состояния предразрушения является накопление внутренней энергии при деформации, которая в очередном цикле нагружения уменьшается из-за разрыва межатомных связей и расходуется на продвижение трещины. Таким образом, параметром наступления состояния предразрушения является релаксация (снижение до нуля) внутренних напряжений (Дарков А.В., Шпиро Г.С. Сопротивление материалов. - М.: Альянс, 2014. - 624 с., стр. 340).

Процесс циклического деформирования сопровождается знакопеременным изменением внутренних напряжений: от минимальных разупрочняющих значений до максимальных упрочняющих . Применение циклического деформирования с возрастающей нагрузкой в каждом цикле позволяет форсировать искусственное старение конструкционного изделия, а также установить поле безопасных напряжений, под которыми понимают напряжения, находящиеся между линиями упрочнения и разупрочнения (фиг. 1, фиг. 2). Поле безопасных напряжений характеризует допустимые состояния конструкционного изделия, в которых рост макротрещины отсутствует.

Циклическое деформирование с возрастающей нагрузкой в каждом цикле осуществляют следующим образом. Эталон нагружают внешним давлением, затем снимают приложенную нагрузку и определяют параметр элементарной кристаллической решетки в ненагруженном состоянии. Эту последовательность действий повторяют, увеличивая величину внешнего давления до момента роста и раскрытия трещины, признаком чего является релаксация внутренних напряжений I рода, свидетельствующая о наступлении состояния предразрушения конструкционного изделия. Шаг нагружения выбирают произвольно.

Внутренние напряжения I рода σI определяют по формуле:

,

где - параметр элементарной кристаллической решетки после нагружения давлением Pi, ;

- параметр элементарной кристаллической решетки после предыдущего нагружения давлением Pi-1, ;

Е - модуль упругости, МПа;

Pi - давление нагружения, МПа.

Момент прорастания трещины определяют из графической зависимости изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1, фиг. 2) следующим образом: точка является моментом прорастания трещины , если после нагружения внешним давлением Pi+1 значение внутренних напряжений I рода меняется в сторону разупрочнения по отношению к предыдущему циклу и становится равным нулю ( при Pi+1).

Параметр состояния предразрушения Kс.п. вычисляют по формуле:

,

где - напряжение предразрушения, соответствующее моменту прорастания трещины, МПа;

- наибольшее из значений внутренних напряжений I рода при циклическом деформировании, МПа.

Значение внутренних напряжений I рода в образце конструкционного изделия определяют по формуле:

,

где - параметр элементарной кристаллической решетки образца конструкционного изделия, ;

- параметр элементарной кристаллической решетки эталона до нагружения, ;

Е - модуль упругости, МПа.

Установление возможности дальнейшей эксплуатации конструкционного изделия проводят путем сравнения (отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании ) с параметром состояния предразрушения Kс.п. следующим образом.

1) Если

В этом случае трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2) Если

В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср, равным значению среднего шага при циклическом деформировании эталона ΔР.

Если после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

,

то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

Если после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

,

то испытание повторяют, снова нагружая образец увеличивающимся внешним давлением с шагом, равным значению среднего шага при циклическом деформировании эталона ΔP.

Испытания проводят до тех пор, пока не наступает упрочнение - или пока не происходит глубокая релаксация напряжений, сопровождающаяся прорастанием трещины - :

- Если , т.е. напряжения I рода изменились в сторону упрочнения, то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

- Если , т.е. наблюдается глубокая релаксация напряжений, то испытания заканчивают - трещины активны.

Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируется на основании полного обследования изделия.

В таблице 1 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

В таблице 2 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 1 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 2 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

Заявляемый способ поясняется следующими примерами.

Пример 1. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (наружная сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 18 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=36; 53; 71; 85; 101; 118; 128; 142; 157 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 1). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1), по которой устанавливают поле безопасных напряжений, значение максимального напряжения (фиг. 1, точка 7) и момент прорастания трещины (фиг. 1, точка 8):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

1.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=16 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=16 МПа (таблица 1).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

1.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

1.2.2.1. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождался изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2.2. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Пример 2. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (внутренняя сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 26 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=51; 77; 103; 123; 144; 171; 185; 206; 226; 247; 267 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 2). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 2), по которой устанавливают поле безопасных напряжений, значения максимального напряжения (фиг. 2, точка 2) и момента прорастания трещины (фиг. 2, точка 11):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

2.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=22 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=22 МПа (таблица 2).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

2.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменяется в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

2.2.2.1. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретает следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=3) сопровождается изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2.2. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=2) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Способ установления состояния предразрушения конструкционного изделия, в котором осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения, отличающийся тем, что из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода , строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины , вычисляют параметр состояния предразрушения K, затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия.
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 152.
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8b

Композиция с антиоксидантной и антибактериальной активностью

Изобретение относится к области медицины и представляет собой композицию, обладающую антиоксидантной и антибактериальной активностью, включающую аскорбат лития, отличающуюся тем, что дополнительно содержит бензоат лития при следующем соотношении компонентов, мас.%: аскорбат лития - 50; бензоат...
Тип: Изобретение
Номер охранного документа: 0002535140
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
Показаны записи 61-70 из 244.
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8065

Коаксиальный магнитоплазменный ускоритель

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит...
Тип: Изобретение
Номер охранного документа: 0002498542
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8199

Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит...
Тип: Изобретение
Номер охранного документа: 0002498853
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.820b

Способ получения волластонитовых керамических пигментов на основе двухкальциевого силиката

Изобретение относится к области производства пигментов для фарфоровых, полуфарфоровых и майоликовых изделий. Способ заключается в быстром охлаждении в воде обожженного при температурах 1050-1100°C геля, полученного обработкой концентрированной соляной кислотой смеси тонкомолотого отхода -...
Тип: Изобретение
Номер охранного документа: 0002498967
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.83a1

Устройство для возбуждения высокочастотного факельного разряда

Изобретение относится к плазменной технике и может быть использовано для инициирования высокочастотной плазмы. Устройство для возбуждения высокочастотного факельного разряда содержит диэлектрическую трубку, установленную в пазу диэлектрического фланца, в осевом отверстии которого размещен полый...
Тип: Изобретение
Номер охранного документа: 0002499373
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.862e

Устройство для моделирования объединенного регулятора потока мощности

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в объединенном регуляторе потока мощности в специализированных многопроцессорных...
Тип: Изобретение
Номер охранного документа: 0002500028
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8806

Способ определения оптимальной скорости резания

Способ относится к твердосплавным режущим инструментам группы применяемости Р в виде режущих пластин и заключается в том, что проводят измерения температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением графической зависимости....
Тип: Изобретение
Номер охранного документа: 0002500504
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.889b

Способ получения нанодисперсной шихты для изготовления нитридной керамики

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота...
Тип: Изобретение
Номер охранного документа: 0002500653
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8977

Электроимпульсный буровой снаряд

Изобретение относится к области проходки скважин и стволов высоковольтными разрядами в крепких горных породах и может найти применение в горнодобывающей промышленности, а также в строительной отрасли. В снаряде последовательно соединены гидротоковвод (1), колонна бурильных труб (2) и буровой...
Тип: Изобретение
Номер охранного документа: 0002500873
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.897b

Установка для обработки буровых и тампонажных растворов

Изобретение относится к нефте- и горнодобывающим отраслям промышленности и может быть использовано для обработки цементных, буровых, тампонажных растворов. Установка содержит последовательно соединенные повысительно-выпрямительные узлы с фильтром высших гармоник на входе, генератор импульсных...
Тип: Изобретение
Номер охранного документа: 0002500877
Дата охранного документа: 10.12.2013
+ добавить свой РИД