×
25.08.2017
217.015.b0de

Результат интеллектуальной деятельности: СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции. Сущность: осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения K.Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия. Технический результат: возможность установления состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах. 2 табл., 2 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции.

Известно изобретение «Способ диагностики трещинообразования в металлоконструкциях» (RU 2356034 С2, МПК G01N 21/88, G01N 3/32, опубл. 20.05.2009), в котором определяют наиболее вероятные места разрушения металлоконструкции и подготавливают в этих местах контрольные площадки. Затем исследуют поверхности контрольных площадок и определяют степень поврежденности. Причем на поверхность этих площадок наносят две и более реперные линии вблизи концентратора напряжений параллельно предполагаемому развитию трещины на одинаковом расстоянии друг от друга. Последовательно через заданное число циклов проводят ряд проверок диагностируемой металлоконструкции: производят измерение расстояния между реперными линиями и определяют степень поврежденности узла исследуемой металлоконструкции по изменению расстояния между указанными линиями.

Недостаток изобретения - невыполнимость диагностирования труднодоступных участков, например внутренних поверхностей металлических труб.

Известно изобретение «Способ контроля целостности трубопроводов циркуляционного контура ядерного реактора» (RU 2208848 С1, МПК G21C 17/017, G01N 23/00, опубл. 20.07.2003), в котором измерение параметров и контроль за процессом образования трещин и определение их месторасположения осуществляют с помощью датчиков γ-излучения. Эти датчики располагают относительно друг друга на диаметрально противостоящих друг другу внешних поверхностях трубопроводов, а измерение параметров трещин и их координат ведут одновременно в процессе перемещения датчиков по наружной поверхности трубопровода. При этом наличие трещины на внутренней поверхности трубопровода определяют по совпадению знаков скоростей изменения активностей, измеренных на диаметрально расположенных внешних поверхностях трубопроводов. Глубину, ширину, протяженность и форму трещины находят по отношению скорости изменения уровня активности излучения, измеренной со стороны внутренней трещины, к скорости изменения уровня активности на диаметрально расположенной стороне трубопровода. Координаты трещин фиксируют по местоположению датчиков излучения на оси трубопровода и углу их поворота от начального положения.

Недостатком изобретения является невозможность прогнозирования дальнейшего роста трещины и установления состояния предразрушения конструкции.

Наиболее близким, принятым за прототип, является изобретение «Способ определения начала разрушения» (RU 2234073 С2, МПК G01N 3/00, опубл. 10.08.2004), в котором деформируют образец материала и регистрируют момент начала разрушения. При этом регистрируют максимальную температуру на рабочем участке образца материала, строят графическую зависимость изменения максимальной температуры от степени деформации, а момент начала разрушения устанавливают по понижению температуры образца материала на стадии предразрушения.

Недостаток изобретения - невозможность применения для материалов, работающих в нестационарных тепловых режимах.

Задача изобретения - установление состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах.

Поставленная задача достигается тем, что в заявленном способе осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения Kс.п.. Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия.

Длительно действующие циклически изменяющиеся напряжения и деформации, возникающие при пусках, остановах, резких изменениях режимов приводят к изменению структуры материала конструкционного изделия, его состояния, механических свойств и сопровождаются образованием микротрещин. Эти микротрещины могут как останавливаться в своем развитии, так и увеличиваться, приводя к потере сплошности, разупрочнению и возникновению состояния предразрушения, которое может спровоцировать разрушение конструкции (отказ).

Причиной наступления состояния предразрушения является накопление внутренней энергии при деформации, которая в очередном цикле нагружения уменьшается из-за разрыва межатомных связей и расходуется на продвижение трещины. Таким образом, параметром наступления состояния предразрушения является релаксация (снижение до нуля) внутренних напряжений (Дарков А.В., Шпиро Г.С. Сопротивление материалов. - М.: Альянс, 2014. - 624 с., стр. 340).

Процесс циклического деформирования сопровождается знакопеременным изменением внутренних напряжений: от минимальных разупрочняющих значений до максимальных упрочняющих . Применение циклического деформирования с возрастающей нагрузкой в каждом цикле позволяет форсировать искусственное старение конструкционного изделия, а также установить поле безопасных напряжений, под которыми понимают напряжения, находящиеся между линиями упрочнения и разупрочнения (фиг. 1, фиг. 2). Поле безопасных напряжений характеризует допустимые состояния конструкционного изделия, в которых рост макротрещины отсутствует.

Циклическое деформирование с возрастающей нагрузкой в каждом цикле осуществляют следующим образом. Эталон нагружают внешним давлением, затем снимают приложенную нагрузку и определяют параметр элементарной кристаллической решетки в ненагруженном состоянии. Эту последовательность действий повторяют, увеличивая величину внешнего давления до момента роста и раскрытия трещины, признаком чего является релаксация внутренних напряжений I рода, свидетельствующая о наступлении состояния предразрушения конструкционного изделия. Шаг нагружения выбирают произвольно.

Внутренние напряжения I рода σI определяют по формуле:

,

где - параметр элементарной кристаллической решетки после нагружения давлением Pi, ;

- параметр элементарной кристаллической решетки после предыдущего нагружения давлением Pi-1, ;

Е - модуль упругости, МПа;

Pi - давление нагружения, МПа.

Момент прорастания трещины определяют из графической зависимости изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1, фиг. 2) следующим образом: точка является моментом прорастания трещины , если после нагружения внешним давлением Pi+1 значение внутренних напряжений I рода меняется в сторону разупрочнения по отношению к предыдущему циклу и становится равным нулю ( при Pi+1).

Параметр состояния предразрушения Kс.п. вычисляют по формуле:

,

где - напряжение предразрушения, соответствующее моменту прорастания трещины, МПа;

- наибольшее из значений внутренних напряжений I рода при циклическом деформировании, МПа.

Значение внутренних напряжений I рода в образце конструкционного изделия определяют по формуле:

,

где - параметр элементарной кристаллической решетки образца конструкционного изделия, ;

- параметр элементарной кристаллической решетки эталона до нагружения, ;

Е - модуль упругости, МПа.

Установление возможности дальнейшей эксплуатации конструкционного изделия проводят путем сравнения (отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании ) с параметром состояния предразрушения Kс.п. следующим образом.

1) Если

В этом случае трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2) Если

В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср, равным значению среднего шага при циклическом деформировании эталона ΔР.

Если после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

,

то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

Если после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

,

то испытание повторяют, снова нагружая образец увеличивающимся внешним давлением с шагом, равным значению среднего шага при циклическом деформировании эталона ΔP.

Испытания проводят до тех пор, пока не наступает упрочнение - или пока не происходит глубокая релаксация напряжений, сопровождающаяся прорастанием трещины - :

- Если , т.е. напряжения I рода изменились в сторону упрочнения, то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

- Если , т.е. наблюдается глубокая релаксация напряжений, то испытания заканчивают - трещины активны.

Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируется на основании полного обследования изделия.

В таблице 1 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

В таблице 2 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 1 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 2 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

Заявляемый способ поясняется следующими примерами.

Пример 1. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (наружная сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 18 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=36; 53; 71; 85; 101; 118; 128; 142; 157 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 1). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1), по которой устанавливают поле безопасных напряжений, значение максимального напряжения (фиг. 1, точка 7) и момент прорастания трещины (фиг. 1, точка 8):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

1.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=16 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=16 МПа (таблица 1).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

1.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

1.2.2.1. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождался изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2.2. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Пример 2. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (внутренняя сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 26 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=51; 77; 103; 123; 144; 171; 185; 206; 226; 247; 267 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 2). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 2), по которой устанавливают поле безопасных напряжений, значения максимального напряжения (фиг. 2, точка 2) и момента прорастания трещины (фиг. 2, точка 11):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

2.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=22 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=22 МПа (таблица 2).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

2.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменяется в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

2.2.2.1. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретает следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=3) сопровождается изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2.2. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=2) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Способ установления состояния предразрушения конструкционного изделия, в котором осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения, отличающийся тем, что из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода , строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины , вычисляют параметр состояния предразрушения K, затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия.
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 152.
20.07.2015
№216.013.6572

Способ тушения пожаров

Изобретение относится к противопожарной технике, а именно к способам тушения пожаров при возгораниях на больших площадях, и может быть использовано для подавления и тушения крупных лесных пожаров, а также при ликвидации возгораний на промышленных и общественных объектах. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002557517
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b48

Импульсный ионный ускоритель

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с...
Тип: Изобретение
Номер охранного документа: 0002559022
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c75

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых...
Тип: Изобретение
Номер охранного документа: 0002559323
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d30

Способ синтеза нанокристаллического карбида кремния

Изобретение относится к технологии получения нанокристаллического карбида кремния. Способ включает плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным...
Тип: Изобретение
Номер охранного документа: 0002559510
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e63

Устройство для защиты от дуговых замыканий ячеек комплектных распределительных устройств

Использование: в области электроэнергетики. Технический результат: повышение быстродействия защиты при дуговых замыканиях в ячейках комплектных распределительных устройств. Устройство защиты содержит первое и второе реле тока, соответственно подключенные к вторичным обмоткам первого и второго...
Тип: Изобретение
Номер охранного документа: 0002559817
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75eb

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева первого экономайзера,...
Тип: Изобретение
Номер охранного документа: 0002561776
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75ef

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор...
Тип: Изобретение
Номер охранного документа: 0002561780
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777d

Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для...
Тип: Изобретение
Номер охранного документа: 0002562178
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777f

Способ переработки пиритного огарка

Изобретение относится к способу переработки пиритного огарка. Способ включает смешивание пиритного огарка с хлоридом аммония и хлорирование при нагреве. Перед смешиванием предварительно проводят окислительный обжиг пиритного огарка. Хлорид аммония берут в избытке до 30% от...
Тип: Изобретение
Номер охранного документа: 0002562180
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77c1

Контактная система вакуумной дугогасительной камеры

Изобретение относится к вакуумным выключателям и может быть использовано в вакуумных дугогасительных камерах высокого напряжения. Контактная система вакуумной дугогасительной камеры содержит соосно расположенные подвижный и неподвижный контактные узлы, каждый из которых состоит из токоподвода в...
Тип: Изобретение
Номер охранного документа: 0002562246
Дата охранного документа: 10.09.2015
Показаны записи 121-130 из 244.
20.07.2014
№216.012.ddf0

Способ умягчения воды

Изобретение относится к водоподготовке и может быть использовано как в домашних, так и в производственных условиях для умягчения воды, содержащей большое количество солей жесткости, а также для осветления и очистки оборотных и сточных вод сельского хозяйства, пищевой и химической...
Тип: Изобретение
Номер охранного документа: 0002522602
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de12

Свч плазменный конвертор

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода. СВЧ плазменный конвертор содержит проточный реактор 1 из радиопрозрачного термостойкого материала, заполненный...
Тип: Изобретение
Номер охранного документа: 0002522636
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df77

Линейный индукционный ускоритель с двумя разнополярными импульсами

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников,...
Тип: Изобретение
Номер охранного документа: 0002522993
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14e

Способ изготовления полимерной ионообменной мембраны радиационно-химическим методом

Изобретение относится к способу изготовления полимерной ионообменной мембраны, которую применяют для разделения вещества с помощью электрохимических процессов, таких как электродиализ, электролиз, для получения электричества в гальванических батареях, в частности, для топливного элемента....
Тип: Изобретение
Номер охранного документа: 0002523464
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e1

Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором

РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор...
Тип: Изобретение
Номер охранного документа: 0002523611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e203

Устройство для раскатки и отбортовки полых изделий

Изобретение относится к обработке металлов пластической деформацией для получения полых оболочек из листового металла, например заготовок для спутниковых тарелок. На основании установлены подвижный механизм с отбортовочным роликом, оправка с приводом и стойки с установленной на них траверсой....
Тип: Изобретение
Номер охранного документа: 0002523645
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e39f

Способ получения композиционного керамического материала

Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/AlO, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов. Изобретение направлено...
Тип: Изобретение
Номер охранного документа: 0002524061
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e720

Способ получения фенилэтинил производных ароматических соединений

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение...
Тип: Изобретение
Номер охранного документа: 0002524961
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e724

Способ очистки природных вод

Изобретение относится к области очистки природных вод и может быть использовано для получения питьевой воды. Способ очистки природных вод включает окисление, нейтрализацию и двухстадийную фильтрацию. Окисление с одновременным переводом примесей в растворимое состояние проводят раствором...
Тип: Изобретение
Номер охранного документа: 0002524965
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e86d

Устройство управления и обеспечения живучести двигателя двойного питания

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести...
Тип: Изобретение
Номер охранного документа: 0002525294
Дата охранного документа: 10.08.2014
+ добавить свой РИД