×
25.08.2017
217.015.b09d

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ

Вид РИД

Изобретение

Аннотация: Использование: для контроля тепловых свойств цифровых интегральных схем. Сущность изобретения заключается в том, что способ заключается в разогреве цифровой интегральной схемы ступенчатой электрической греющей мощностью известной величины и в измерении в определенные моменты времени в процессе разогрева цифровой интегральной схемы температурочувствительного параметра с известным температурным коэффициентом, по изменению которого рассчитывают приращение температуры активной области цифровой интегральной схемы, с целью упрощения способа и уменьшения погрешности измерения переходной тепловой характеристики для задания электрической греющей мощности нечетное число (n>1) логических элементов контролируемой цифровой интегральной схемы соединяют по схеме кольцевого генератора, подключают его к источнику питания, в заданные моменты времени t измеряют мгновенную мощность, потребляемую цифровой интегральной схемой от источника питания, и частоту колебаний кольцевого генератора, а значение переходной тепловой характеристики в момент времени t находят по формуле: где и - частота колебаний кольцевого генератора в моменты времени t=0 и t соответственно, - температурный коэффициент частоты колебаний кольцевого генератора, Р(t)=[Р(0)+P(t)]/2 - средняя мощность, потребляемая цифровой интегральной схемой за время от начала нагрева t=0 до момента времени t, а P(0) и P(t) - мгновенная мощность, потребляемая цифровой интегральной схемой в моменты времени t=0 и t соответственно. Технический результат: обеспечение возможности упрощения способа и уменьшения погрешности измерения тепловой переходной характеристики цифровых интегральных схем. 2 ил.

Изобретение относится к технике измерения тепловых характеристик полупроводниковых изделий и может быть использовано для измерения переходных тепловых характеристик цифровых интегральных схем как на этапах разработки и производства приборов, так и на входном контроле потребителя или при выборе режимов эксплуатации.

Ключевой задачей контроля тепловых свойств полупроводниковых приборов (ППП) является определение параметров их тепловой эквивалентной схемы, по которым можно рассчитать температуру активной области (p-n-перехода) ППП в любом заданном режиме работы прибора. В приближении одномерной тепловой схемы ППП задача сводится к определению набора значений тепловых сопротивлений (RTi) и теплоемкостей (CTi) или тепловых постоянных времени (τTi=RTi⋅CTi) отдельных элементов и слоев материалов, составляющих конструкцию ППП. Указанные параметры могут быть определены по переходной тепловой характеристике (ПТХ) H(t) полупроводникового прибора, то есть по изменению температуры Δθn(t) активной области прибора при его саморазогреве ступенчатой электрической мощностью заданной величины P0: H(t)=Δθn(t)/P0.

Известен способ измерения ПТХ ППП с p-n-переходами по кривой остывания (см. Давидов П.Д. Анализ и расчет тепловых режимов полупроводниковых приборов. М.: Энергия. 1967. стр. 33), состоящий в том, что исследуемый ППП разогревают заданной электрической мощностью до установившегося теплового режима, затем разогревающую электрическую мощность отключают и в заданные моменты времени измеряют изменение температуры p-n-перехода по изменению температурочувствительного параметра (ТЧП), в качестве которого чаще всего используют прямое падение напряжения на контролируемом p-n-переходе при малом прямом токе. Недостатками этого способа является большое время измерения, обусловленное необходимостью предварительного разогрева ППП до установившегося теплового режима и последующего охлаждения до температуры окружающей среды. Фактически время измерения в два раза превышает длительность ПТХ.

Известен способ измерения ПТХ полупроводниковых изделий с p-n-переходами (см. IC Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device) EIA/JEDEC JESD51-1 standard // http://www.jedec.org/download/search/jesd51-1.pdf), состоящий в том, что на изделие с помощью внешнего генератора подают ступеньку электрической греющей мощности заданной величины, в процессе разогрева изделия в определенные моменты времени ti на короткий временной интервал (длительностью до нескольких десятков микросекунд) греющую мощность отключают, с помощью внешнего источника тока через контролируемый p-n-переход пропускают малый ток в прямом направлении и измеряют ТЧП - прямое падение напряжения на p-n-переходе, температурный коэффициент KT которого известен, приращение температуры Δθn(ti) в момент времени ti определяется по изменению ТЧП:

,

где Up-n(0) - падение напряжение на p-n-переходе до разогрева изделия, Up-n(ti) - падение напряжения на p-n-переходе в момент времени ti.

Этот метод реализован, в частности, в установке T3Ster - Thermal Transient Tester (см. T3Ster - Thermal Transient Tester // www.mentor.com/micred).

Недостатком указанного способа измерения ПТХ является значительная погрешность измерения ТЧП - прямого падения напряжения на контролируемом p-n-переходе - сразу же после выключения греюшей мощности из-за влияния паразитных переходных электрических процессов, возникающих в p-n-переходе полупроводникового изделия при переключении из греющего режима в измерительный режим (см., например, Сергеев В.А., Юдин В.В. Измерение тепловых параметров полупроводниковых изделий с применением амплитудно-импульсной модуляции греющей мощности // Измерительная техника. - 2010. - №6. - С. 32-39.). Для снижения этой погрешности измерение ТЧП необходимо проводить через некоторое время задержки после выключения греющей мощности, за которое электрический переходный процесс в основном завершится; за это время температура p-n-перехода может заметно измениться. При этом постоянная времени релаксации электрических процессов заранее не известна, сильно зависит от величины греющей мощности и может значительно отличаться от образца к образцу. Кроме этого, для реализации способа необходимы внешний генератор греющей мощности и источник малого прямого тока.

Технический результат - упрощение способа и уменьшение погрешности измерения тепловой переходной характеристики цифровых интегральных схем.

Технический результат достигается тем, что в известном способе, состоящем в разогреве цифровой интегральной схемы ступенчатой электрической греющей мощностью известной величины и в измерении в определенные моменты времени в процессе разогрева цифровой интегральной схемы температурочувствительного параметра с известным температурным коэффициентом, по изменению которого рассчитывают приращение температуры активной области цифровой интегральной схемы, для задания электрической греющей мощности нечетное число (n>1) логических элементов контролируемой цифровой интегральной схемы соединяют по схеме кольцевого генератора, подключают его к источнику питания с известным напряжением питания, в заданные моменты времени ti измеряют мгновенную мощность, потребляемую цифровой интегральной схемой от источника питания, и частоту колебаний кольцевого генератора, а значение переходной тепловой характеристики в момент времени ti находят по формуле:

,

где и - частота колебаний кольцевого генератора в моменты времени t0=0 и ti соответственно, - температурный коэффициент частоты колебаний кольцевого генератора, Pср(ti)=[P(0)+P(ti)]/2 - средняя мощность, потребляемая цифровой интегральной схемой за время от начала нагрева t0=0 до момента времени ti, а P(0) и P(ti) - мгновенная мощность, потребляемая цифровой интегральной схемой в моменты времени t0=0 и ti соответственно.

В основе предложенного способа лежат два физических процесса: саморазогрев логических элементов (ЛЭ) цифровой интегральной схемы (ЦИС), соединенных по схеме кольцевого генератора (КГ) собственными генерируемыми импульсами, и уменьшение частоты генерации КГ с ростом температуры. Длительность периода следования Tк генерируемых КГ импульсов определяется временем τзад задержки распространения сигнала ЛЭ ЦИС: Tк=2τзадn, где n=(2m-1) - количество ЛЭ в КГ при m=2, 3, … Относительный коэффициент ξ увеличения времени задержки распространения сигнала ЛЭ ЦИС при повышении температуры составляет величину порядка 0,2-0,3%/°C, то есть сравним с температурными коэффициентами электрических параметров ЦИС и является практически постоянным в диапазоне от 0 до 100°C (см., например, Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. - Л.: Энергоатомиздат, 1986, стр. 75).

Достижение технического результата обеспечивается тем, что в предлагаемом способе не используются внешние генератор греющей электрической мощности и источник малого прямого тока, а цифровая интегральная схема не переключается из режима нагрева в режим измерения, таким образом исключаются погрешности, обусловленные переходными электрическим процессами и падением напряжения на токоведущих шинах микросхемы.

На фиг. 1 приведена структурная схема устройства, реализующего предложенный способ, а на фиг. 2 - эпюры сигналов, поясняющие сущность способа и принцип работы устройства.

Устройство содержит контролируемую ЦИС 1, три ЛЭ которой соединены по схеме КГ, источник 2 питания с выходным напряжением Uпит, устройство управления 3, токосъемный резистор 4, схему 2И-НЕ 5, используемую для снижения влияния счетчика импульсов на частоту генерации КГ, генератор 6 строб-импульсов, цифровой вольтметр 7, счетчик импульсов 8, вычислитель 9 и индикатор 10.

Устройство работает следующим образом. В исходном состоянии счетчик 8 обнулен. Устройство управления 3 в момент времени t0=0 формирует импульс Uy1 цикла измерения длительностью TЦ (рис. 2, а), достаточной для установления стационарного теплового режима данного типа ЦИС, который поступает на вход первого ЛЭ контролируемой ЦИС 1. В момент времени t0=0 КГ начинает генерировать импульсы с частотой следования (фиг. 2, б). Частота колебаний КГ близка к предельно допустимой для данного типа ЦИС, и ЦИС будет заметно разогреваться поглощаемой мощностью. При увеличении температуры активной области ЦИС в результате саморазогрева на величину Δθn(t) время задержки сигнала ЛЭ ЦИС будет возрастать, а частота колебаний КГ соответственно уменьшаться практически линейно с ростом температуры: , где - частота генерации КГ в начале нагрева. Импульсы, генерируемые КГ, поступают на первый вход схемы 2И-НЕ 5.

В течение ТЦ цикла измерения устройство управления в заданные моменты времени ti вырабатывает короткие управляющие импульсы UУ2 (фиг. 2, в), которые поступают на генератор 6 строб-импульсов и управляющий вход цифрового вольтметра 7. Генератор 6 строб-импульсов формирует строб-импульсы Uс длительностью Tс, которые поступают на второй вход схемы 2И-НЕ 5 (фиг. 2, г). За время действия строб-импульса с выхода схемы 2И-НЕ 5 в счетчик 8 поступает ki импульсов КГ (фиг. 2, д), по окончании строб-импульса число ki передается из счетчика в вычислитель 9. Очевидно, что число импульсов ki определяется частотой колебаний КГ и длительностью строб-импульса или .

Падение напряжения UR(ti) на токосъемном резисторе 4, пропорциональное току потребления ЦИС: UR(ti)=R⋅Iпот(ti), где R - сопротивление токосъемного резистора, в моменты времени ti по сигналам UУ2 измеряется цифровым вольтметром 7 и также передается в вычислитель 9.

Вычислитель 9 вычисляет средний потребляемый ЦИС ток по формуле , затем рассчитывает значение тепловой переходной характеристики по формуле и передает массив данных {ti, H(ti)} на индикатор 10, который отображает эту информацию в удобной для оператора форме.

Покажем, что при расчете значений H(ti) ПТХ необходимо использовать не мгновенное значение потребляемой ЦИС мощности, а величину средней потребляемой ЦИС мощности за время от t0=0 до ti.

В линейных тепловых моделях изменение температуры активной области ЦИС Δθn(t) определяется только законом изменения полной рассеиваемой мощности P(t) и выражается интегралом Дюамеля:

где h(t-t') - отклик температуры структуры на δ - подобный импульс мощности в момент времени t'.

Поскольку для КМОП ЦИС греющая мощность пропорциональна частоте колебаний, то в процессе разогрева греющая мощность будет изменяться с тем же температурным коэффициентом, что и частота: , где P0≡P(0) - мощность, потребляемая ЦИС в начале нагрева. Для более точного измерения ПТХ необходимо учесть изменение греющей мощности в процессе цикла измерения. Решение уравнения (1) с учетом температурной зависимости греющей мощности с точностью до членов порядка имеет вид

где решение (1) в отсутствие температурной зависимости греющей мощности, то есть при P(t')=Р0≡P(0)=const:

После подстановки (3) в (2) получим

где выражение и есть средняя мощность, потребляемая ЦИС за время t, откуда и получаем H(t)=Δθn(t)/Pcp(t).

Длительность Tс строб-импульса выбирается исходя из двух условий. С одной стороны, величина Tс должна быть достаточно малой, чтобы температура активной области ЦИС, а значит и частота колебаний КГ, не изменялись сколь-нибудь заметно за время действия строб-импульса. Погрешность, обусловленная изменением температуры за время действия строб-импульса, будет наиболее существенной в начале нагрева и ее можно оценить величиной , где τTкр - тепловая постоянная времени кристалла микросхемы, Δθкр≈0,63RTккP(0) - изменение температуры активной области ЦИС за время, равное тепловой постоянной времени кристалла ЦИС, RTкк - тепловое сопротивление кристалла ЦИС.

С другой стороны, необходимо уменьшать погрешность измерения частоты методом дискретного счета: .

Оптимальная длительность строб-импульса , при которой суммарная погрешность измерения частоты колебаний КГ будет минимальна, определяется из условия равенства погрешностей: , откуда

При типичных значениях τTкр≈103 с, Δθкр≈10°C, Гц/°C и Гц из (5) получим величину мкс, а .

Заметим, что при такой длительности строб-импульса с высокой точностью можно считать, что частота колебаний КГ меняется за время строб-импульса линейно на любом участке цикла измерения. Тогда число импульсов ki, подсчитанное счетчиком за время Tc, начиная с момента ti, будет соответствовать частоте колебаний КГ в моменты времени ti+Tc/2, то есть , учесть конечную длительность Tс можно просто путем смещения всех рассчитанных значений ПТХ по оси времени на величину .


СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 259.
27.02.2015
№216.013.2d95

Бампер транспортного средства

Бампер транспортного средства относится к устройствам для активного гашения скорости и энергии удара при столкновении транспортного средства с препятствием. Бампер содержит прикрепленный к передней части корпуса (1) транспортного средства ударный брус (2), соединенный внутренней поверхностью с...
Тип: Изобретение
Номер охранного документа: 0002543137
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2df1

Устройство для задержания автомобиля

Устройство для задержания автомобиля может быть использовано на охраняемых объектах. Устройство содержит установленный вдоль проезжей части дороги плоский инерционный элемент - тяжелую платформу, и расположенные с обеих сторон от дороги стойки, снабженные механизмом вертикального перемещения...
Тип: Изобретение
Номер охранного документа: 0002543229
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e06

Устройство для удаления сосулек с крыши здания

Изобретение относится к области строительства, в частности к устройству для удаления сосулек с крыши здания. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Устройство для удаления сосулек содержит укрепленные по краю наклонного козырька упругий...
Тип: Изобретение
Номер охранного документа: 0002543250
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e3f

Ранговый фильтр

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров и др. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002543307
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e90

Устройство для задержания автомобиля

Устройство для задержания автомобиля может быть использовано на охраняемых объектах. Устройство содержит установленные с обеих сторон от проезжей части дороги стойки, снабженные механизмом вертикального перемещения расположенного между ними своей средней частью троса, состоящим из редукторов с...
Тип: Изобретение
Номер охранного документа: 0002543388
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e93

Устройство для задержания автомобиля

Устройство для задержания автомобиля может быть использовано на охраняемых объектах и на контрольно-пропускных пунктах. Устройство содержит установленные с обеих сторон проезжей части дороги стойки, снабженные механизмом вертикального перемещения троса, состоящим из редукторов с...
Тип: Изобретение
Номер охранного документа: 0002543391
Дата охранного документа: 27.02.2015
27.03.2015
№216.013.3525

Косвенный способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом отрицательной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Сущность: в выходную диагональ мостовой цепи устанавливают термозависимый технологический резистор R, номинал которого больше возможных значений компенсационного термозависимого резистора R. Параллельно резистору R устанавливают перемычку. Измеряют...
Тип: Изобретение
Номер охранного документа: 0002545089
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3596

Антитеррористический шлагбаум

Антитеррористический шлагбаум предназначен для защиты от несанкционированного проезда транспортных средств. Шлагбаум содержит стрелу, закрепленную в углублениях фиксирующих опор, установленных на фундаментных выступах по краям дорожного полотна. Hа выступе рядом со стрелой установлен...
Тип: Изобретение
Номер охранного документа: 0002545202
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3599

Противотаранный шлагбаум

Противотаранный шлагбаум предназначен для защиты от несанкционированного проезда транспортных средств. Шлагбаум содержит стрелу, установленную в углубления фиксирующих опор, закрепленные на фундаментных выступах по краям проезжей части дороги. Стрела связана с электрогидравлическим приводом, в...
Тип: Изобретение
Номер охранного документа: 0002545205
Дата охранного документа: 27.03.2015
Показаны записи 41-50 из 431.
20.08.2013
№216.012.6099

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, циркония и хрома при их...
Тип: Изобретение
Номер охранного документа: 0002490361
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.609a

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке. Сначала наносят нижний слой из нитрида соединения титана, хрома и ниобия при их соотношении, мас.%: титан 84,0-90,0,...
Тип: Изобретение
Номер охранного документа: 0002490362
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.609b

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их соотношении, мас.%: титан 86,5-92,0,...
Тип: Изобретение
Номер охранного документа: 0002490363
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.609c

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения вакуумно-плазменным методом износостойких многослойных покрытий на режущий инструмент и может быть использовано в металлообработке. Сначала наносят нижний слой из нитрида соединения титана, алюминия и молибдена при их соотношении, мас.%: титан...
Тип: Изобретение
Номер охранного документа: 0002490364
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.609d

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Сначала наносят нижний слой из нитрида соединения титана, кремния и циркония при их соотношении, мас.%: титан 83,0-87,4,...
Тип: Изобретение
Номер охранного документа: 0002490365
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.609e

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Вакуумно-плазменным методом наносят многослойное покрытие. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002490366
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6110

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики. В способе работы тепловой электрической станции, по которому паром отопительных отборов теплофикационной турбины нагревают сетевую воду в сетевых подогревателях, отработавший в теплофикационной турбине пар конденсируют в конденсаторе...
Тип: Изобретение
Номер охранного документа: 0002490480
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61c1

Способ определения теплового сопротивления цифровых интегральных микросхем

Изобретение относится к измерительной технике. Способ предназначен для использования на выходном и входном контроле качества КМОП цифровых интегральных микросхем и оценки их температурных запасов. Выбранный в качестве источника тепла логический элемент микросхемы нагревают проходящим греющим...
Тип: Изобретение
Номер охранного документа: 0002490657
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61f0

Реляторный модуль

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров и др. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002490704
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61f1

Реляторный модуль

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров и др. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002490705
Дата охранного документа: 20.08.2013
+ добавить свой РИД