×
25.08.2017
217.015.b07a

Результат интеллектуальной деятельности: Способ создания в исследуемых объектах локальных электрических и магнитных полей

Вид РИД

Изобретение

№ охранного документа
0002613332
Дата охранного документа
16.03.2017
Аннотация: Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов. Способ создания в исследуемых объектах локальных электрических и магнитных полей содержит этапы, на которых осуществляют размещение объекта либо внутри соленоида, либо между обкладок конденсатора управляемого колебательного LC-контура, при этом вначале с помощью источника тока заряжают соленоид, затем отключают источник тока и подключают к соленоиду конденсатор, при этом созданное в соленоиде магнитное поле изменяется по закону , а электрическое поле в конденсаторе по закону , где H и E - заданные напряженности магнитного и электрического полей, Ω - заданная частота колебаний, β - заданная скорость затуханий колебаний, t - время, i, j=0, 1, 2, … N, где N целое число, а фаза является фиксированной и равной нулю. Технический результат – повышение точности измерения и улучшение пространственного разрешения магнитных и электрических микроскопов. 3 ил.

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов.

В частности известно, что физические свойства высокотемпературных сверхпроводников очень чувствительны к незначительным пространственным неоднородностям, так как их длина когерентности является величиной одного порядка по сравнению с межатомным и межэлектронным расстояниями. Следовательно, исследование особенностей проникновения магнитного потока в такие среды имеет большое научное и прикладное значение. Обычно для исследования пространственных неоднородностей используют разного рода микроскопы, которые позволяют наблюдать интегральные характеристики сверхпроводников, так как внешнее поле после его выключения или уменьшения плавно выходит из образца и частично захватывается образцом. Это обстоятельство не позволяет одновременно получить информацию о магнитной и кристаллографической микроструктурах образца [1, 2]. Также известно, что одновременно изучать магнитную и кристаллографическую микроструктуру образцов возможно с помощью дифракции нейтронов. Однако, несмотря на то, что распределение полей регистрируется локально, эта методика так же, как и известные к настоящему времени методики, является интегральной, так как магнитная структура образца исследуется в однородном магнитном поле или после его плавного снятия [3].

Традиционно для создания локальных магнитных полей используют концентраторы силовых линии магнитного поля [4], а для создания локальных электрических полей в качестве электродов используют заостренные штыри, на которые подают высоковольтный относительно земли электрический потенциал [5]. Эти способы имеют существенные недостатки. Во-первых, величина области локализации полей ограничена размерами кончиков концентраторов и электродов, а также расстоянием между концентраторами и электродами. Особенно это сильно сказывается тогда, когда исследуются толстые образцы из-за эффекта растекания поля на толщине образца. Электроды быстро выходят из строя из-за разогрева их кончиков. Для регистрации сигнала отклика необходимо сначала приблизить концентраторы к образцу, а потом, с целью исключения влияния остаточных (захваченных) в концентраторах магнитных полей на результаты измерения, отодвигать концентраторы от объекта. Эти требования усложняют конструкцию установки. Делают способ дорогостоящим и не надежным. Кроме этого, эти методики не позволяют одновременно создавать локальные электрические и магнитные поля. Для каждого случая необходимо применять свою установку. Для решения этих проблем разработка новых прецизионных методик на принципиально другой физической основе является актуальной задачей. В настоящее время нам не известны способы, решающие аналогичные задачи.

Техническим результатом изобретения является создание в исследуемых объектах в одном цикле локальных электрического и магнитного полей, а также повышение пространственного разрешения электромагнитного поля за счет повышения степени локализации электрического и магнитного полей.

Технический результат достигается тем, что в способе создания в исследуемых объектах локальных электрических и магнитных полей, включающем размещение объекта либо внутри соленоида, либо между обкладок конденсатора управляемого колебательного LC-контура, вначале с помощью источника тока заряжают соленоид, затем отключают источник тока и подключают к соленоиду конденсатор, при этом созданное в соленоиде магнитное поле изменяется по закону , а электрическое поле в конденсаторе по закону , где Hi,j и Ei,j - заданные напряженности магнитного и электрического полей, Ω - заданная частота колебаний, β - заданная скорость затуханий колебаний, t - время, i,j=0, 1, 2, …N, где N целое число.

Кроме сказанного, отличительной особенностью от обычного способа возбуждения электромагнитных колебаний в пассивных и активных LC контурах, где фаза колебания произвольна, предлагаемый способ позволяет фиксировать фазу, что очень важно не только для создания нужных полей, но и проведения исследования селективным образом.

На фиг. 1 представлена блок-схема установки для реализации способа, где 1 - исследуемый объект, 2, 3, 4 - токовые ключи, 5 - блок управления, 6 - биполярный источник тока.

Способ реализуется следующим образом: при одновременном поступлении в токовые ключи 2 и 3 от блока управления (компьютера) 5 импульсов прямой и обратной полярности происходит соединение регулируемого биполярного разрядного источника тока 6 с соленоидом L. Таким образом происходит накопление магнитной энергии в соленоиде. При смене полярностей импульсов, поступающих от блока управления 5 в токовые ключи 2 и 3, происходит отключение биполярного источника тока 6 и включение в цепь соленоида L емкости С. Это приводит к зарядке конденсатора C и к преобразованию магнитной энергии в электрическую. В результате последовательных преобразований магнитной энергии в электрическую, и наоборот, в LC-контуре возникает однополярное переменное затухающее во времени магнитное поле H(t)=Hiexp(-βt)cosΩt. В этом выражении β=r/(2L) - коэффициент затухания, Ω=(ω22)1/2 - собственная частота колебательного контура, ω2=1/(LC). Так как амплитуда колебания Hiexp(-βt) экспоненциально затухает от значения Hi до нуля, захват потока от переменного поля не происходит и фиксируется только от поля Hi. При получении от блока управления 5 управляющего импульса о смене полярности выходного напряжения биполярного источника 6 через соленоид L протекает ток обратного направления. В этом случае процесс накопления магнитной энергии в L, зарядка и разрядка емкости С происходят аналогично вышеописанному способу. В результате в LC-контуре создается осциллирующее затухающее во времени переменное высокостабильное однородное магнитное поле отрицательной полярности H(t)=-Hjexp(-βt)cosΩt.

На фиг. 2 приведена временная зависимость поля H(t) для произвольных параметров LC контура: 2.1 - для случая положительной полярности выходного напряжения источника 6; 2.2 - для случая отрицательной полярности выходного напряжения источника 6. С помощью изменения индуктивности L и емкости С можно обеспечить устойчивую работу LC контура в широком частотном диапазоне. Амплитуду, частоту и скорость затухания магнитного поля можно задавать независимо друг от друга в широком диапазоне.

Для создания постоянного однополярного или биполярного однородного магнитных полей от блока управления 5 в токовый ключ 4 поступают разнополярные импульсы, которые отключают из цепи емкость С и включают в цепь резистор R. Биполярный источники тока 6, подробно описанный в [6], представляет собой управляемый двоичным кодом биполярный преобразователь код-ток, построенный по принципу биполярного источника. Путем чередования переключений выходных напряжений источника 6 в LC-контуре будет создаваться осциллирующее затухающее во времени высокостабильное биполярное переменное однородное магнитное поле . Для создания в образце локального электрического поля исследуемый объект помещается между обкладками конденсатора С. Благодаря использованию в качестве задающего поля фронта переменного затухающего магнитного и электрического полей H(t), E(t) существенно улучшается пространственное разрешение магнитных и электрических микроскопов и повышается точность измерения. Это, в отличие от традиционных методик, позволяет одновременно исследовать кристаллические, электронные и магнитные микросостояния объектов и установить взаимосвязь между ними, а также обнаруживать незначительные пространственные разбросы локальных характеристик образца и изучить их влияние на диэлектрические и магнитные свойства объектов. Так, например, использование переменного затухающего во времени магнитного поля H(t) в качестве зондирующего поля позволило в отличие от высокоинформативных методов рентгенографического анализа и сканирующей электронной микроскопии высокого разрешения (позволяющие обнаружить границы двойникования размером до 50 ) в сильных внешних магнитных полях в эпитаксиальных пленках, монокристаллических и монодоменах квазимонокристаллических ВТСП образцах обнаружить и исследовать границы двойникования мелкого масштаба, являющиеся замаскированными со стороны границ двойникования больших размеров. Между тем, проведение такого рода анализа позволит получить полезную информацию о магнитном микросостоянии (локальных критических параметров монодоменов, кристаллитов и субкристаллитов, а также междоменных, межкристаллитных и межсубкристаллитных слабых связей; энергии междоменных, межкристаллитных и межсубкристаллитных джозефсоновских переходов; энергии конденсации в монодоменах, кристаллитах и субкристаллитах; сил пиннингов в них и т.д.) и кристаллографического микросостоянии (линейных размерах монодоменов, кристаллитов и субкристаллитов, степени изменения анизотропии; плотности границ двойникования; усиления ближнего порядка с уменьшением размеров монодоменов, кристаллитов и субкристаллитов; а также морфологии разномасштабных дефектов, локализованных дислокаций, пластических деформаций и других возможных дефектов микроструктуры и т.д.) сверхпроводников. Ответы на эти и другие вопросы позволят более подробно установить взаимосвязь кристаллографической и магнитной микроструктур ВТСП и помогут развитию многих перспективных технологий, основанных на использовании ВТСП. Методику можно также использовать для одновременного исследования магнитного и кристаллографического микросостояний ферромагнетиков, антиферромагнетиков, парамагнитных жидкостей, химических и других физических объектов. Путем создания локальных электрических полей разной напряженности, частоты и скорости затухания в широком температурном диапазоне исследовать диэлектрические свойства объектов, а именно такие, как поляризация и деполяризация диэлектриков, переориентация доменов сегнетоэлектриков, антисегнетоэлектриков и т.д. Электромагнитным полем возбуждать локальный звук (фонон) в металлах. Исследовать акустические кристаллы. Кроме этого следует подчеркнуть, что методика позволит в локальном магнитном поле измерить также гальваномагнитные эффекты, например, такие как проводимость, магнитосопротивление и эффект Холла. Заменяя датчик Холла на микросоленоид, внутри которого будет помещен образец, можно в локальном поле измерить интегральные характеристики образца, такие как магнитный момент, магнитная восприимчивость и магнитная проницаемость образца и т.д. Сопоставление локальных и интегральных магнитных и диэлектрических свойств объектов, которые изучались в локальных и нелокальных однородных постоянных и переменных электромагнитных полях, может послужить хорошим информативным способом для построения моделей адекватного описания физических и химических свойств объектов.

ЛИТЕРАТУРА

1. Zola D., Polichetti M., Senatore C. et al. // Phys. Rev. B. 2004. V. 70. P. 224504.

2. Jooss Ch., Albrecht J., Kuhn H. et al. // Rep. Prog. Phys. 2002. V. 65. P. 651.

3. Забенкин B.H., Аксельрод Л.А., Воробьев А.А. и др.// Письма в ЖЭТФ. 1999. Т. 70. С. 771.

4. Ozmanyn Kh. R., Sandomirskii V.В. and. Sukhanov A.A.. Supercond. Sci. Technol. 255 (1990).

5. Воннегут Б., Мур Г.Б. Журнал геофизических исследований. Т. 67. США: 1962, N 3.

6. Ростами X.Р. Преобразователь код-ток// Патент RU N 2007862 С1, 15.02.94., Бюл. №3.

Способ создания в исследуемых объектах локальных электрических и магнитных полей, включающий размещение объекта либо внутри соленоида, либо между обкладок конденсатора управляемого колебательного LC-контура, при этом вначале с помощью источника тока заряжают соленоид, затем отключают источник тока и подключают к соленоиду конденсатор, при этом созданное в соленоиде магнитное поле изменяется по закону , а электрическое поле в конденсаторе по закону , где H и E - заданные напряженности магнитного и электрического полей, Ω - заданная частота колебаний, β - заданная скорость затуханий колебаний, t - время, i, j=0, 1, 2, … N, где N целое число, а фаза является фиксированной и равной нулю.
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Способ создания в исследуемых объектах локальных электрических и магнитных полей
Источник поступления информации: Роспатент

Показаны записи 71-80 из 91.
02.10.2019
№219.017.cf06

Устройство и способ измерения спектральных характеристик волоконно-оптических брэгговских решеток

Группа изобретений относится к волоконной оптике. Устройство измерения спектральных характеристик волоконно-оптических брэгговских решеток включает полупроводниковый лазер со встроенным элементом нагрева-охлаждения. К управляющим выходам блока контроля и управления подключены входы устройства...
Тип: Изобретение
Номер охранного документа: 0002700736
Дата охранного документа: 19.09.2019
09.10.2019
№219.017.d3b3

Приемное устройство для радиосвязи с подводным объектом

Устройство относится к радиотехнике и предназначено для приема радиоволн сверхнизких и крайне низких частот (СНЧ и КНЧ) в морской среде при радиосвязи с движущимся подводным объектом. Технический результат состоит в улучшении эксплуатационных характеристик за счет уменьшения длины кабельной...
Тип: Изобретение
Номер охранного документа: 0002702235
Дата охранного документа: 07.10.2019
17.10.2019
№219.017.d660

Функциональный компонент магноники на многослойной ферромагнитной структуре

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для...
Тип: Изобретение
Номер охранного документа: 0002702915
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d66d

Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002702916
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6be

Способ обнаружения скрытых предметов на терагерцевых изображениях тела человека

Способ обнаружения скрытых предметов на теле человека включает регистрацию собственного теплового излучения (ТИ) человека в терагерцевом диапазоне электромагнитных волн с последующей цифровой обработкой анализируемого ТИ-изображения. Формируют набор эталонов, каждый из которых включает в себя:...
Тип: Изобретение
Номер охранного документа: 0002702913
Дата охранного документа: 14.10.2019
21.11.2019
№219.017.e44b

Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла

Изобретение относится к радиотехнике, в частности к фильтрам. Многоканальный фильтр СВЧ-сигнала содержит размещенную на подложке ферромагнитную пленочную структуру, сопряженную с входным и выходными преобразователями поверхностных магнитостатических волн (ПМСВ), источники управляющего внешнего...
Тип: Изобретение
Номер охранного документа: 0002706441
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e7b3

Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах. Технический результат заключается в создании мультиплексора ввода-вывода с возможностью управления режимами работы устройства за счет изменения конфигурации распределения внутреннего магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002707391
Дата охранного документа: 26.11.2019
01.12.2019
№219.017.e841

Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации

Изобретение относится к радиотехнике, в частности к делителям сигналов. Делитель мощности СВЧ сигнала на магнитостатических волнах содержит размещенную на подложке микроволноводную структуру на основе пленки железо-иттриевого граната (ЖИГ), входной и два выходных порта, связанных с...
Тип: Изобретение
Номер охранного документа: 0002707756
Дата охранного документа: 29.11.2019
04.02.2020
№220.017.fd2f

Акустический мультиканальный анализатор микропроб жидких сред

Использование: для анализа жидких сред, в том числе биологических жидкостей. Сущность изобретения заключается в том, что анализатор содержит пьезоэлектрическую пластину, в центральной части которой расположен излучающий ВШП. По обе стороны пластины по направлению излучения с зазором размещены...
Тип: Изобретение
Номер охранного документа: 0002712723
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd6a

Датчик аэрометрических давлений

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Датчик аэрометрических давлений содержит корпус, в котором выполнены два отверстия, сообщающихся с...
Тип: Изобретение
Номер охранного документа: 0002712777
Дата охранного документа: 31.01.2020
Показаны записи 41-47 из 47.
26.08.2017
№217.015.dcc2

Быстродействующий измеритель амплитуды квазисинусоидальных сигналов

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. Быстродействующий измеритель амплитуды...
Тип: Изобретение
Номер охранного документа: 0002624413
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e379

Устройство для непрерывного неинвазивного измерения кровяного давления

Изобретение относится к медицинской технике. Устройство для непрерывного неинвазивного измерения кровяного давления содержит установленный в корпусе (11) аппликатор (10), выполненный в виде заполненной жидкостью (15) полости (12) с гибкой мембраной (13) для обеспечения механического контакта с...
Тип: Изобретение
Номер охранного документа: 0002626319
Дата охранного документа: 25.07.2017
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fc24

Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством...
Тип: Изобретение
Номер охранного документа: 0002638712
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1297

Оротрон

Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн. Технический результат - увеличение КПД открытого резонатора оротрона и, как следствие, увеличение КПД...
Тип: Изобретение
Номер охранного документа: 0002634304
Дата охранного документа: 25.10.2017
+ добавить свой РИД