×
25.08.2017
217.015.adc8

Результат интеллектуальной деятельности: Способ получения низкомодульных сплавов на основе системы титан-ниобий селективным лазерным сплавлением

Вид РИД

Изобретение

Аннотация: 1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов. Предварительно производят механическую активацию порошков титана и ниобия, взятых в массовом соотношении 6:4. Затем механоактивированную смесь титан-ниобиевого порошка помещают в вакуумной камере в зоне лазерной обработки слоем 0.05-0.1 мм. В вакуумной камере создают предварительный вакуум не хуже 10 Па и вводят аргон. Осуществляют нагрев интенсивным лазерным излучением до температуры 2800-3000°С с последующей выдержкой при этой температуре в течение 1-3 мсек. Обеспечивается получение низкомодульного титан-ниобиевого сплава заданного состава с определенными свойствами, с однородным распределением структурных составляющих по всему объему сплава, являющегося экологически чистым за счет отсутствия в продуктах синтеза посторонних веществ, сокращение длительности процесса и снижение стоимости готовой продукции вследствие отсутствия предварительной выплавки сплава TiNb (40 мас.%) и последующего изготовления из этого сплава порошка для селективного лазерного сплавления. 2 з.п. ф-лы, 3 пр.

Изобретение относится к области порошковой металлургии и может быть использовано при производстве низкомодульных сплавов и изделий из них на основе порошков титана и ниобия методом послойного лазерного сплавления, которые могут найти применение в качестве индивидуальных хирургических, травматологических, дентальных и других имплантатов.

Известен способ получения композиционных материалов, содержащих алюминий и титан (RU 2038192, B22F 3/14, С22С 1/04, 1995) [1], включающий горячее прессование плакированного алюминием порошка титана следующего состава, мас. %: титан 37-50, алюминий 50-63 при 630-650°С и выдержке при этой температуре 0,5-1,5 ч.

Недостатками известного способа является то, что на выходе материал является не гомогенным и может содержать непрореагировавший титан в зависимости от состава исходного композиционного порошка, что приводит к снижению прочности и твердости, а также повышенные затраты времени на осуществление способа при длительной выдержке после нагрева.

Наиболее близким аналогом к предложенному техническому решению является способ получения монофазного интерметаллидного сплава на основе системы алюминий-титан (RU 2561952, B22F 3/23, С22С 14/00, 2015) [2], включающий предварительную механическую активацию порошка алюминия в количестве 25 мас. % и порошка титана в количестве 75 мас. %. Полученную смесь уплотняют, помещают в вакуум и осуществляют ее нагрев высокочастотным электромагнитным полем до температуры 1200-1400°С и последующую выдержку. Обеспечивается получение монофазного интерметаллидного сплава заданного состава с однородным распределением структурных составляющих.

Недостатком известного способа является длительность процесса синтеза монофазного материала.

В основу настоящего изобретения положена задача создания способа получения низкомодульного сплава на основе системы титан-ниобий с заранее заданным составом и необходимыми свойствами на основе селективного лазерного сплавления.

Техническим результатом является обеспечение получения низкомодульного сплава с однородным распределением структурных составляющих по всему объему сплава, а также уменьшение длительности процесса синтеза сплава на основе системы титан-ниобий.

Указанный технический результат достигается тем, что способ получения низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением включает предварительную механическую активацию исходных порошков, нагрев до температуры образования сплава с последующей выдержкой, для этого механоактивированную смесь титан-ниобиевого порошка, взятого в массовом соотношении 6:4, помещают в вакуумной камере в зоне лазерной обработки слоем 0.05-0.1 мм, затем в вакуумной камере создают предварительный вакуум и затем вводят аргон, далее осуществляют нагрев интенсивным лазерным излучением до температуры 2800-3000°С с последующей выдержкой при этой температуре в течение 1-3 мс.

В вакуумной камере создают предварительный вакуум не хуже 10-2 Па и затем вводят аргон в вакуумную камеру до давления 0.1-0.15 МПа.

Однородное распределение структурных составляющих по всему объему получаемого сплава обусловлено тем, что исходную порошковую смесь предварительно подвергают механической активации для повышения реакционной способности порошковой системы, затем при достаточно высоком темпе нагрева системы происходит переплав компонентов и при охлаждении системы формируется сплав с равномерным распределением компонентов, именно это позволяет управлять реализацией селективного лазерного сплавления и получать сплав с гомогенной структурной морфологией.

Уменьшение длительности процесса получения низкомодульного сплава на основе системы титан-ниобий обусловлено тем, что после механической активации осуществляется, с одной стороны, возможность быстрого нагрева порошков титана и ниобия интенсивным лазерным излучением до температуры 2800-3000°С и быстрым охлаждением при прекращении нагрева лазерным излучением с другой стороны, чего нельзя достигнуть при получении низкомодульного сплава системы титан-ниобий. При этом в результате реакции при высоких температурах непосредственно в зоне плавления время выдержки является кратковременным, зависящим от необходимой структуры конечного продукта.

Количество порошка титана, составляющее 60 мас. %, и порошка ниобия в количестве 40 мас. %, является оптимальным, так как предложенный способ направлен на получение низкомодульного сплава TiNb, а при содержании порошка титана, составляющем менее 60 мас. %, и порошка ниобия в количестве, составляющем более 40 мас. %, синтезируемый продукт не будет являться низкомодульным сплавом состава TiNb(40 мас. %), и при содержании порошка титана в количестве, составляющем более 60 мас. %, и порошка ниобия в количестве, составляющем менее 40 мас. %, синтезируемый продукт не будет являться низкомодульным сплавом состава TiNb (40 мас.%).

Температура нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющая 2800-3000°С является оптимальной, так как при температуре нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющей менее 2800°С синтезируемый продукт будет характеризоваться высокой концентрацией неравновесных дефектов структуры, а при температуре нагрева порошков титана и ниобия интенсивным лазерным излучением, составляющей более 3000°С будет происходить кипение и испарение сплава.

Время выдержки, составляющее 1-3 мс, является оптимальным, так как при выдержке менее 1 мс. синтезируемый продукт будет характеризоваться высокой концентрацией неравновесных дефектов структуры, а при выдержке более 3 мс. произойдет перитектический распад фазы TiNb.

Способ получения низкомодульного сплава на основе системы титан - ниобий осуществляется следующим образом.

Предварительно производят высокоэнергетическую механическую активацию исходной порошковой смеси, содержащей 60 мас. % титана и 40 мас. % ниобия, в планетарной шаровой мельнице для механического легирования и получения титан-ниобиевого композитного порошка. Далее механоактивированную смесь титан-ниобиевого порошка вводят тонким слоем в вакуумную камеру в зону лазерной обработки. Толщина слоя 0.05-0.1 мм обусловлена глубиной проплавления порошка. Затем порошок нагревают интенсивным лазерным излучением до температуры 2800-3000°С, а выдержку при этой температуре производят в течение времени, соответствующего образованию сплава заданного состава, составляющего 1-3 мс.

Пример 1.

Готовят смесь порошков титана марки ПТМ в количестве 60 мас. % со средним размером частиц 10-15 мкм и ниобия марки НбП-а со средним размером частиц 5-10 мкм в количестве 40 мас. %. Смесь порошков подвергают механической активации в планетарной шаровой мельнице АГО-2С ударно-фрикционного типа.

Механоактивированная порошковая смесь состава Ti+Nb представляет собой механокомпозит с размерами частиц 10-50 мкм.

Далее полученную механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят слоем 0.05 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 3 мс.

Пример 2

Полученную по первому примеру, механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят слоем 0.1 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 1 мс.

Пример 3.

Полученную по первому примеру, механоактивированную порошковую смесь состава Ti+Nb извлекают из цилиндров планетарной шаровой мельницы и засыпают в устройство нанесения слоя порошка на установке селективного лазерного сплавления. С помощью этого устройства механоактивированную порошковую смесь состава Ti+Nb наносят тонким слоем 0.08 мм в зону лазерной обработки - вакуумную камеру. После этого в вакуумной камере создают предварительный вакуум не хуже 10-2 Па. Потом в вакуумную камеру вводят аргон до давления 0.1-0.15 МПа. Затем механоактивированную порошковую смесь состава Ti+Nb нагревают интенсивным лазерным излучением до температуры 2800-3000°С, инициируя процесс переплава порошковой смеси. Время воздействия лазерного излучения составляет 2 мс.

Конечным продуктом, реализующим предложенный способ по примерам 1-3, является низкомодульный сплав TiNb (40 мас.%), который может найти применение в медицине в качестве материала для имплантатов.

Таким образом, использование предлагаемого способа обеспечивает получение низкомодульного титан-ниобиевого сплава заданного состава с определенными свойствами, с однородным распределением структурных составляющих по всему объему сплава, являющегося экологически чистым за счет отсутствия в продуктах синтеза посторонних веществ, сокращение длительности процесса и снижение стоимости готовой продукции вследствие отсутствия предварительной выплавки сплава TiNb (40 мас.%) и последующего изготовления из этого сплава порошка для селективного лазерного сплавления.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 60.
27.11.2014
№216.013.0b64

Способ изготовления композиционного катода для нанесения многокомпонентных ионно-плазменных покрытий

Изобретение относится к порошковой металлургии, в частности к технологии получения композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных покрытий. Способ изготовления композиционного катода для нанесения многокомпонентных ионно-плазменных покрытий включает...
Тип: Изобретение
Номер охранного документа: 0002534324
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.124c

Способ определения коэффициента трения в скользящем электроконтакте без смазки и устройство для его осуществления

Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в узлах трения щетка-коллектор электродвигателя или электрогенератора, а также в узлах токосъемная вставка-троллей, вставка-токоподводящая шина, башмак-рельс, т.е. при низком давлении (менее 1...
Тип: Изобретение
Номер охранного документа: 0002536107
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1c70

Установка ионно-плазменной обработки изделий

Изобретение относится к области медицины и может быть использовано для модификации поверхностного слоя объемных изделий, например кардиоимплантатов. Установка ионно-плазменной обработки изделий содержит: рабочую камеру с источником ионов; шлюзовую камеру; вакуумный затвор; системы...
Тип: Изобретение
Номер охранного документа: 0002538708
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2448

Способ изготовления изделия из гранулированной пеностеклокерамики

Изобретение относится к гранулированной пеностеклокерамике. Технический результат изобретения заключается в упрощении технологии, расширении сырьевой базы при получении пеностеклокерамики с высокими эксплуатационными свойствами вплоть до 620-700°С. Осуществляют совместный помол предварительно...
Тип: Изобретение
Номер охранного документа: 0002540741
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29da

Устройство для термической обработки и способ формирования кристаллического сорбента

Изобретение относится к технологии производства сорбентов, иммобилизованных на полимерных волокнистых носителях, и может быть использовано для термической и термохимической обработки листовых материалов в различных отраслях промышленности. Устройство для термической обработки микроволокнистой...
Тип: Изобретение
Номер охранного документа: 0002542171
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.38be

Антисептический сорбционный материал, способ его получения и повязка для лечения ран на его основе

Группа изобретений относится к медицине, конкретно к абсорбирующим нетканым материалам, содержащим дисперсные сорбенты. Описан антисептический сорбционный материал, обладающий противовоспалительным, ранозаживляющим, абсорбирующим, вяжущим и антисептическим действием, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002546014
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.50cf

Способ получения износостойкого антифрикционного сплава

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес. олова,...
Тип: Изобретение
Номер охранного документа: 0002552208
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.70be

Агломераты оксигидроксидов металлов и их применение

Изобретение относится к области неорганической химии. Предложен продукт в виде агломератов оксигидроксидов металлов, выбранных из группы, состоящей из Al, Fe, Mg, Ti или их смеси. Агломераты образованы множеством элементов, имеющих размеры от 200 до 500 нм и представляющих собой низкоразмерные...
Тип: Изобретение
Номер охранного документа: 0002560432
Дата охранного документа: 20.08.2015
27.11.2015
№216.013.93c3

Шихта для композиционного катода и способ его изготовления

Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного синтеза многокомпонентных наноструктурных нитридных покрытий. Шихта для композиционного катода содержит, мас.%: порошок силицида титана TiSi 13.0-63.0, титан остальное, при этом...
Тип: Изобретение
Номер охранного документа: 0002569446
Дата охранного документа: 27.11.2015
10.04.2016
№216.015.2b50

Способ плазменно-иммерсионной ионной модификации поверхности изделия из сплава на основе никелида титана медицинского назначения

Изобретение относится к медицине, а именно к медицинской технике, и может быть использовано для плазменно-иммерсионной ионной модификации поверхности изделия (имплантаты) из сплава на основе никелида титана медицинского назначения. Для этого проводят очистку поверхности, нагрев изделия аргонной...
Тип: Изобретение
Номер охранного документа: 0002579314
Дата охранного документа: 10.04.2016
Показаны записи 11-20 из 42.
27.11.2014
№216.013.0b64

Способ изготовления композиционного катода для нанесения многокомпонентных ионно-плазменных покрытий

Изобретение относится к порошковой металлургии, в частности к технологии получения композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных покрытий. Способ изготовления композиционного катода для нанесения многокомпонентных ионно-плазменных покрытий включает...
Тип: Изобретение
Номер охранного документа: 0002534324
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.124c

Способ определения коэффициента трения в скользящем электроконтакте без смазки и устройство для его осуществления

Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в узлах трения щетка-коллектор электродвигателя или электрогенератора, а также в узлах токосъемная вставка-троллей, вставка-токоподводящая шина, башмак-рельс, т.е. при низком давлении (менее 1...
Тип: Изобретение
Номер охранного документа: 0002536107
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1c70

Установка ионно-плазменной обработки изделий

Изобретение относится к области медицины и может быть использовано для модификации поверхностного слоя объемных изделий, например кардиоимплантатов. Установка ионно-плазменной обработки изделий содержит: рабочую камеру с источником ионов; шлюзовую камеру; вакуумный затвор; системы...
Тип: Изобретение
Номер охранного документа: 0002538708
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2448

Способ изготовления изделия из гранулированной пеностеклокерамики

Изобретение относится к гранулированной пеностеклокерамике. Технический результат изобретения заключается в упрощении технологии, расширении сырьевой базы при получении пеностеклокерамики с высокими эксплуатационными свойствами вплоть до 620-700°С. Осуществляют совместный помол предварительно...
Тип: Изобретение
Номер охранного документа: 0002540741
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29da

Устройство для термической обработки и способ формирования кристаллического сорбента

Изобретение относится к технологии производства сорбентов, иммобилизованных на полимерных волокнистых носителях, и может быть использовано для термической и термохимической обработки листовых материалов в различных отраслях промышленности. Устройство для термической обработки микроволокнистой...
Тип: Изобретение
Номер охранного документа: 0002542171
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.38be

Антисептический сорбционный материал, способ его получения и повязка для лечения ран на его основе

Группа изобретений относится к медицине, конкретно к абсорбирующим нетканым материалам, содержащим дисперсные сорбенты. Описан антисептический сорбционный материал, обладающий противовоспалительным, ранозаживляющим, абсорбирующим, вяжущим и антисептическим действием, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002546014
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.50cf

Способ получения износостойкого антифрикционного сплава

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес. олова,...
Тип: Изобретение
Номер охранного документа: 0002552208
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.70be

Агломераты оксигидроксидов металлов и их применение

Изобретение относится к области неорганической химии. Предложен продукт в виде агломератов оксигидроксидов металлов, выбранных из группы, состоящей из Al, Fe, Mg, Ti или их смеси. Агломераты образованы множеством элементов, имеющих размеры от 200 до 500 нм и представляющих собой низкоразмерные...
Тип: Изобретение
Номер охранного документа: 0002560432
Дата охранного документа: 20.08.2015
27.11.2015
№216.013.93c3

Шихта для композиционного катода и способ его изготовления

Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного синтеза многокомпонентных наноструктурных нитридных покрытий. Шихта для композиционного катода содержит, мас.%: порошок силицида титана TiSi 13.0-63.0, титан остальное, при этом...
Тип: Изобретение
Номер охранного документа: 0002569446
Дата охранного документа: 27.11.2015
10.04.2016
№216.015.2b50

Способ плазменно-иммерсионной ионной модификации поверхности изделия из сплава на основе никелида титана медицинского назначения

Изобретение относится к медицине, а именно к медицинской технике, и может быть использовано для плазменно-иммерсионной ионной модификации поверхности изделия (имплантаты) из сплава на основе никелида титана медицинского назначения. Для этого проводят очистку поверхности, нагрев изделия аргонной...
Тип: Изобретение
Номер охранного документа: 0002579314
Дата охранного документа: 10.04.2016
+ добавить свой РИД