×
25.08.2017
217.015.ad3b

Результат интеллектуальной деятельности: Способ гидравлического разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002612417
Дата охранного документа
09.03.2017
Аннотация: Изобретение относится к горному делу и может быть применено для гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды. Способ включает спуск колонны труб в скважину, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины, крепление трещины закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой. При этом дополнительно спускают перфоратор на колонне труб в добывающую скважину до подошвы пласта, выполняют пары перфорационных отверстий по периметру скважины снизу вверх со смещением на угол при выполнении каждой пары перфорационных отверстий. После выполнения перфорации колонну труб с перфоратором извлекают из скважины. Затем в скважину спускают колонну труб с пакером, производят посадку пакера в скважине, закачкой гелированной жидкости производят ГРП с образованием трещины. Далее в трещину закачивают оторочку сшитого геля на углеводородной основе в объеме 0,2 от объема закачанной гелированной жидкости. Крепление трещины производят в два этапа. При этом объем оставшейся гелированной жидкости делят на две равные части, а крепление трещины разрыва производят проппантом фракций 20/40 и 12/18, покрытым резино-полимерной композицией, равными долями по массе на каждом из этапов. При этом на первом этапе трещину крепят закачкой первой части гелированной жидкости с проппантом фракций 20/40, покрытым резино-полимерной композицией, а на втором этапе трещину крепят закачкой второй части гелированной жидкости с проппантом фракций 12/18, покрытым резино-полимерной композицией. Технический результат заключается в повышении эффективности и надежности проведения ГРП. 1 табл., 5 ил.

Изобретение относится к области нефтегазодобывающей промышленности, в частности, может быть использовано для гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды.

Известен способ гидроразрыва пласта (ГРП) (патент RU №2170818, МПК E21B 43/26, опубл. 20.07.2001 г., бюл. №20), предусматривающий образование в пласте с подошвенной водой трещины гидроразрыва, при этом в насосно-компрессорные трубы (НКТ) и ниже них спускают гибкие трубы (ГТ) до нижних отверстий интервала перфорации для прокачки по ним проппанта в смеси с водоизолирующим цементом в количестве, достаточном для заполнения смесью нижней части трещины до уровня выше водонефтяного контакта с заполнением части трещины в зоне подошвенной воды в части трещины внизу нефтенасыщенной зоны, при этом одновременно по колонне НКТ подают жидкость-песконоситель с проппантом в количестве, достаточном для заполнения верхней части вертикальной трещины.

Недостатки данного способа:

- во-первых, ГРП осуществляют перед водоизоляцией, что в карбонатных породах может привести к образованию трещин по всей высоте пласта от подошвенной воды до кровли, и нет гарантии того, что при проведении последующей водоизоляции подошвенной части пласта их полностью удастся изолировать (перекрыть канал поступления воды в продуктивную часть пласта), что снижает эффективность ГРП и вызывает быстрое обводнение скважины при последующей эксплуатации карбонатного пласта;

- во-вторых, после образования трещин в пласте закачкой жидкости разрыва по колонне НКТ в колонну НКТ спускают ГТ и на проведение этой операции затрачивается определенное количество времени, в течение которого трещины частично смыкаются, затем производят одновременно водоизоляцию цементом по ГТ подошвенной части пласта и закачку жидкости-песконосителя по кольцевому пространству между колоннами НКТ и ГТ для уплотнения уже начавшей смыкаться трещины, что усложняет технологический процесс осуществления способа и снижает проницаемость образуемых трещин;

- в-третьих, колонна НКТ должна иметь большой диаметр, так как для прокачки жидкости-песконосителя используется кольцевое пространство между колоннами НКТ и ГТ, поэтому перед проведением ГРП необходимо совершать дополнительные спуско-подьемные операции по замене эксплуатационной колонны НКТ;

- в-четвертых, необходимо привлекать дорогостоящее оборудование (пескосмеситель) и насосные агрегаты высокого давления для продавки жидкости-песконосителя с проппантом в пласт.

Наиболее близким по технической сущности является способ гидроразрыва малопроницаемого пласта (патент RU №2402679, МПК E21B 43/26, опубл. 27.10.2010 г., бюл. №30), включающий спуск колонны труб в скважину в интервал продуктивного пласта, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины, при этом в процессе закачки обеспечивают турбулентный режим течения жидкости в трещине посредством закачивания гелированной жидкости с вязкостью менее 0,01 Па⋅с со скоростью закачки не менее 8 м3/мин, производят крепление трещины разрыва закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой, причем радиус проппанта, покрытого резиновой оболочкой, определяют расчетным путем.

Недостатками данного способа являются:

- во-первых, низкая эффективность реализации способа, так как в процессе образования трещины она может развиться не в направлении, перпендикулярном направлению минимального напряжения, а в направлении водоносного горизонта, особенно в скважинах с подошвенной водой, что может привести к прорыву трещины в водоносный горизонт и, как следствие, резкому обводнению продукции;

- во-вторых, низкая надежность проведения ГРП, связанная с закачкой проппанта расчетного радиуса, при этом ошибка в расчете может привести к невозможности продавки проппанта в трещину и ее закрепления;

- в-третьих, низкое качество изоляции скважины от перетока по трещине попутной и/или подошвенной воды проппантом, покрытым резиновой оболочкой, не имеющей возможности набухания, что вызовет резкое обводнение скважины;

- в четвертых, нижний конец колонны труб спущен в интервал пласта, что чревато прихватом колонны труб при резком повышении давления, например, во время крепления трещины, и как следствие проведение аварийных работ;

- в-пятых, низкая проводимость трещины разрыва, так как в процессе разрыва пласта гель образует осадок в трещине, что способствует неполному закреплению трещины проппантом одной фракции.

Техническими задачами изобретения являются повышение эффективности и надежности реализации способа, а также повышение качества изоляции трещины от попутной и/или подошвенной воды, исключение прихвата при проведении ГРП и повышение проводимости трещины разрыва.

Поставленные технические задачи решаются способом гидравлического разрыва пласта - ГРП, включающим спуск колонны труб в скважину, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины, крепление трещины закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой.

Новым является то, что дополнительно спускают перфоратор на колонне труб в добывающую скважину до подошвы пласта, выполняют пары перфорационных отверстий по периметру скважины снизу вверх со смещением на угол при выполнении каждой пары перфорационных отверстий, после выполнения перфорации колонну труб с перфоратором извлекают из скважины, затем в скважину спускают колонну труб с пакером, производят посадку пакера в скважине, закачкой гелированной жидкости производят ГРП с образованием трещины, далее в трещину закачивают оторочку сшитого геля на углеводородной основе в объеме 0,2 от объема закачанной гелированной жидкости, крепление трещины производят в два этапа, при этом объем оставшейся гелированной жидкости делят на две равные части, а крепление трещины разрыва производят проппантом фракций 20/40 и 12/18, покрытым резино-полимерной композицией, равными долями по массе на каждом из этапов, при этом на первом этапе трещину крепят закачкой первой части гелированной жидкости с проппантом фракций 20/40, покрытым резино-полимерной композицией, а на втором этапе трещину крепят закачкой второй части гелированной жидкости с проппантом фракций 12/18, покрытым резино-полимерной композицией.

На фиг. 1 схематично изображен процесс перфорации интервала пласта в скважине.

На фиг. 2 схематично изображена развертка интервала перфорации скважины.

На фиг. 3 схематично изображен устьевой фланец с метками и колонна труб с риской в процессе проведения ГРП.

На фиг. 4 схематично изображен процесс ГРП.

На фиг. 5 схематично изображено направление развития трещины.

В добывающую скважину 1 (см. фиг. 1 и 2) до подошвы пласта 2 на колонне труб 3 спускают перфоратор 4 любой известной конструкции (щелевой, гидромеханический), позволяющий выполнить пару отверстий прямоугольного сечения, расположенных противоположно друг к другу (под углом 180°). Например, используют гидромеханический перфоратор ПГМ конструкции института «ТатНИПИнефть».

В интервале продуктивного пласта 2 по периметру скважины 1 снизу вверх выполняют пары перфорационных отверстий со смещением на угол в зависимости от количества пар отверстий и расстояния между ними (см. фиг. 2) при выполнении каждой пары перфорационных отверстий.

Например, перфорируют интервал пласта 2 (см. фиг. 1 и 2) выполнением, например, шести пар отверстий (прямоугольного сечения) 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' снизу вверх с подъемом и поворотом колонны труб на 30° при каждом последующем проколе.

Длину h подъема колонны труб 3 между парами отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' определяют как высоту продуктивного пласта 2, разделенную на семь равных частей.

Например, при высоте пласта Н=3,5 м длина h между парами отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10, а также от кровли и подошвы пласта 2 будет равна:

h=Н/7=3,5 м/7=0,5 м.

В процессе реализации способа необходимо получить шесть пар отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' с равным углом поворота 30° между ближайшими парами. Например, между парой отверстий 7' и 7'' (см. фиг. 3) угол поворота снизу относительно отверстий 6' и 6'' и выше относительно отверстий 8' и 8'' составляет 30°.

С этой целью применяют устьевой фланец (на фиг. 3 показан условно), имеющий насечки 11', 11'', 11''', 11'''', 11''''', 11'''''' по периметру с углом 30° (см. фиг. 2 и 3), соответствующие каждой паре отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10''.

На колонне труб наносят одну риску 12 (см. фиг. 1 и 3), например углубление высотой 40-50 мм и глубиной 2 мм на поверхности колонны труб 3.

Размещают риску 12 колонны труб 3 на отметке 11' устьевого фланца положении колонны труб колонну труб 3 с гидромеханическим перфоратором 4.

Приподнимают колонну труб 3 с гидромеханическим перфоратором 4 от подошвы пласта 2 на длину h=0,5 м. Выполняют пару отверстий 5' и 5'' в интервале пласта 2 скважины 1 с помощью гидромеханического перфоратора 4 (за счет радиального выдвижения двух резцов, размещенных относительно друг друга под углом 180°) согласно инструкции по его эксплуатации.

Затем вновь приподнимают колонну труб 3 с гидромеханическим перфоратором 4 вверх на 0,5 м, при этом поворачивают колонну труб 3 до размещения ее риски 12 напротив метки 11'' на устьевом фланце, например, по часовой стрелке, и производят выполнение с помощью гидромеханического перфоратора 4 пары отверстий 6' и 6'' в интервале пласта 2 скважины 1.

Далее аналогичным образом, поворачивая колонну труб 3 по часовой стрелке на 30° и последовательно совмещая риску 12 колонны труб 3 с метками 11''', 11'''', 11''''', 11'''''', выполняют еще четыре соответствующих пары отверстий 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' в интервале пласта 2 скважины 1.

Направление перфорации снизу вверх в скважине 1 выбирают с целью исключения прихвата резцов (на фиг. 1 показаны условно) гидромеханического перфоратора 4 при их выдвижении ранее выполненными парами отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10''. Таким образом, в интервале пласта 2 (см. фиг. 1) скважины 1 получают перфорационные отверстия 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10''.

Выполнение пар отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' с поворотом 30° позволяет создать направления образования трещины 13 (см. фиг. 4 и 5) в пласте 2 при последующем проведении ГРП в направлении, перпендикулярном минимальному напряжению пород в пласте 2 (см. фиг. 3).

Например, направление пары отверстий 7' и 7'' в интервале продуктивного пласта 2 совпадает с направлением, перпендикулярным минимальному напряжению пород в продуктивном пласте 2. Извлекают колонну труб 3 с гидромеханическим перфоратором 4 из скважины 2.

Далее спускают в скважину 1 колонну труб 3 с пакером 14. В качестве пакера применяют любой известный пакер. Производят посадку пакера 14 в скважине 1, например, на 5 м выше нижнего конца колонны труб 3, и осуществляют герметизацию заколонного пространства колонны труб 3, при этом нижний конец колонны труб 3 находится выше кровли пласта 2 на расстоянии 0,5 м.

Расстояние, равное 0,5 м, позволяет исключить прихват колонны труб 3 в случае резкого повышения давления в процессе крепления трещины 13.

Применение гидромеханического перфоратора повышает надежность проведения ГРП, так как в процессе перфорации образуются пары отверстий 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10''. Каждая пара из прямоугольных отверстий имеет минимальный размер 10 на 20 мм. Этого размера вполне достаточно для продавки проппанта фракций 20/40 и 12/18 (см. табл.) в трещину 13 и ее закрепления.

На устье скважины 1 на верхний конец колонны труб 3 наворачивают задвижку 15, которую посредством нагнетательной линии 16 обвязывают с насосными агрегатами (на фиг. 1, 2, 3, 4 и 5 не показаны) для закачки гелированной жидкости.

Определяют общий объем гелированной жидкости по следующей формуле:

Vг=k⋅Hп,

где Vг - общий объем гелированной жидкости, м3;

k=11-12 - коэффициент перевода, м3/м, примем k=11;

Нп - высота пласта 2, м.

В данной формуле коэффициент перевода получен опытным путем и зависит от физико-химических свойств пласта 2 (см. фиг. 1), в котором производят ГРП. Например, высота пласта 2 равна 3,5 м.

Подставляя в формулу Vг=k⋅Hп, получаем общий объем гелированной жидкости:

Vг=(11-12) (м3/м)⋅3,5 (м)=(38,5-42) м3.

Примем Vг=40 м3. В качестве гелированной жидкости применяют любой известный состав линейного геля.

С помощью насосных агрегатов по нагнетательной линии 16 (см. фиг. 4) через открытую задвижку 15 закачивают в скважину 1 по колонне труб 3 через перфорационные отверстия 5' и 5'', 6' и 6'', 7' и 7'', 8' и 8'', 9' и 9'', 10' и 10'' в интервале пласта 2 гелированную жидкость - линейный гель с динамической вязкостью, например, 30 сП до достижения разрыва пород пласта 2. Например, разрыв породы пласта 2 происходит через пару отверстий 7' и 7'', направление которых перпендикулярно направлению минимального напряжения - σмин (см. фиг. 4 и 5) и образования трещины 13, о чем будет свидетельствовать падение давления закачки и увеличение приемистости пласта 2.

Повышается эффективность реализации способа, так как в процессе образования трещины 13 она развивается в направлении, перпендикулярном направлению минимального напряжения, что исключает прорыв трещины в водоносный горизонт в процессе проведения ГРП и не приводит к обводнению продукции.

Так, в процессе закачки линейного геля достигли давления 30 МПа, а вследствие образования трещины 13 произошло падение давления закачки линейного геля на 25%, т.е. до 22,5 МПа, при этом приемистость пласта 2 увеличилась на 30%, например, от 7,0 до 9,1 м3/мин. Использование линейного геля с динамической вязкостью 30 сП создает меньшее сопротивление вследствие сравнительно низкой вязкости и позволяет создать высокопроводящую трещину 13. В процессе образования трещины 13 по колонне труб в пласт 2 была закачана гелеобразная жидкость разрыва - линейный гель в объеме, например, 19 м3.

Далее в трещину 13 закачивают сшитый гель в объеме 0,2 от объема закачанной гелированной жидкости разрыва, т.е. 0,2⋅19 м3=3,8 м3.

С помощью насосных агрегатов по нагнетательной линии 16 через открытую задвижку 15 по колонне труб 3 и через пару отверстий 7' и 7'' в трещину 13 закачивают оторочку сшитого геля на углеводородной основе. В качестве геля на углеводородной основе применяют любой известный состав геля на углеводородной основе. Сшитый гель на углеводородной основе имеет низкие потери давления на трение в трубах и высокую вязкость в пласте, что обеспечивает создание широких, глубоко проникающих трещин с хорошим заполнением расклинивающим материалом. При деструкции не образует осадка, не повреждает пласт и набивку, что способствует образованию высокопроводящей трещины.

Сшитый гель опускается на дно трещины 13 и образует своеобразную «подушку» 17 (см. фиг. 4), которая с одной стороны предотвращает развитие трещины 13 вниз и ее прорыв при последующем ее креплении проппантом в пласт с подошвенной водой (при наличии), а с другой - снижает фильтрацию линейного геля в подошву пласта 2, что позволяет равномерно заполнить трещину 13 проппантом.

Далее производят крепление трещины в два этапа. Оставшийся объем гелированной жидкости делят на две равные части (Vг1=Vг2=(40 м3-19 м3)/2=21 м3/2=10,5 м3) и закачивают в два этапа с равным количеством проппанта фракций 20/40 и 12/18, покрытого резино-полимерной композицией. Например, при общем количестве проппанта, равном 6 т, в каждом из этапов закачивают по 3 т проппанта (6 т/2=3 т).

Таким образом, на первом этапе в гелированной жидкости объемом Vг1=10,5 м3 закачивают проппант, покрытый резино-полимерной композицией, фракцией 20/40 в количестве 3 т.

На втором этапе в гелированной жидкости объемом Vг2=10,5 м3 закачивают проппант, покрытый резино-полимерной композицией, фракцией 12/18 в количестве 3 т. Резино-полимерной композицией покрывают исходную фракцию проппанта (см. табл.), при этом толщина самого слоя этой композиции составляет примерно 0,4 мм, что получено опытным путем. Резино-полимерная композиция имеет возможность набухания в воде до 300% от первоначальной величины.

Покрытие проппанта - это модифицированное покрытие ВНР-400 (отношение массовых частей В50Э к каучуку - 400/100) резино-полимерной композицией на основе бутадиен-нитрильного каучука марки БНКС-28АМН и водонабухающего полиакриламида марки В-50Э.

Крепление трещины 13 производят после размещения на дне трещины 13 «подушки» сшитого геля в два этапа: сначала закачкой мелкой фракции проппанта 20/40 крепят отдаленную часть трещины, а затем более крупной фракцией проппанта 12/18 крепят трещину разрыва 13 в призабойной зоне скважины, что позволяет создать высокопроводящую трещину разрыва 13.

В результате повышается качество изоляции трещины при наличии попутной и/или подошвенной воды, так как проппант, покрытый резино-полимерной композицией, имеет возможность набухания только в воде (в нефти данная композиция не набухает) до 300% от первоначальной толщины 0,4 мм, что приводит к уплотнению проппанта в трещине и предотвращает обводнение скважины.

Предлагаемый способ ГРП позволяет:

- повысить эффективность и надежность проведения ГРП;

- повысить качество изоляции трещины при наличии попутной и/или подошвенной воды;

- исключить вероятность прихвата колонны труб при возникновении резкого повышения давления;

- создать высокопроводящую трещину разрыва.

Способ гидравлического разрыва пласта - ГРП, включающий спуск колонны труб в скважину, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины, крепление трещины закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой, отличающийся тем, что дополнительно спускают перфоратор на колонне труб в добывающую скважину до подошвы пласта, выполняют пары перфорационных отверстий по периметру скважины снизу вверх со смещением на угол при выполнении каждой пары перфорационных отверстий, после выполнения перфорации колонну труб с перфоратором извлекают из скважины, затем в скважину спускают колонну труб с пакером, производят посадку пакера в скважине, закачкой гелированной жидкости производят ГРП с образованием трещины, далее в трещину закачивают оторочку сшитого геля на углеводородной основе в объеме 0,2 от объема закачанной гелированной жидкости, крепление трещины производят в два этапа, при этом объем оставшейся гелированной жидкости делят на две равные части, а крепление трещины разрыва производят проппантом фракций 20/40 и 12/18, покрытым резино-полимерной композицией, равными долями по массе на каждом из этапов, при этом на первом этапе трещину крепят закачкой первой части гелированной жидкости с проппантом фракций 20/40, покрытым резино-полимерной композицией, а на втором этапе трещину крепят закачкой второй части гелированной жидкости с проппантом фракций 12/18, покрытым резино-полимерной композицией.
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Источник поступления информации: Роспатент

Показаны записи 331-340 из 584.
10.08.2018
№218.016.7b34

Гидромеханический перфоратор

Изобретение относится к нефтедобывающей промышленности, в частности к области вторичного вскрытия созданием перфорационных каналов в эксплуатационной колонне. Гидромеханический перфоратор содержит гидропривод, состоящий из по меньшей мере двух цилиндров с поршнями, верхний из которых соединен с...
Тип: Изобретение
Номер охранного документа: 0002663760
Дата охранного документа: 09.08.2018
13.08.2018
№218.016.7ba3

Соединительный узел бурового инструмента с обсадной колонной

Изобретение относится к области бурения нефтяных и газовых скважин, а именно к способам бурения на обсадной колонне. Соединительный узел бурового инструмента с обсадной колонной включает обсадную колонну с башмаком, вставленный в обсадную колонну переходник бурового инструмента, плунжер с...
Тип: Изобретение
Номер охранного документа: 0002663856
Дата охранного документа: 10.08.2018
13.09.2018
№218.016.872d

Способ очистки тяжелого нефтяного сырья от неорганических примесей

Представлен способ очистки тяжелого нефтяного сырья от неорганических примесей, соединений металлов и серы, характеризующийся тем, что проводят экстракцию в одноступенчатом центробежном экстракторе с использованием в качестве экстрагирующего раствора водного раствора неорганической кислоты или...
Тип: Изобретение
Номер охранного документа: 0002666729
Дата охранного документа: 12.09.2018
16.09.2018
№218.016.8835

Ключ штанговый

Изобретение относится к ручным инструментам, применяемым в качестве ключа для закручивания или откручивания штанг скважинных насосов. Ключ штанговый содержит втулку, выполненную с отверстием, соосным ее боковой стенке. Втулка выполнена в форме дуги, концы стенки которой лежат в плоскости,...
Тип: Изобретение
Номер охранного документа: 0002667108
Дата охранного документа: 14.09.2018
22.09.2018
№218.016.88be

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится к способам гидравлического разрыва в горизонтальном стволе скважины. Способ включает бурение горизонтального ствола скважины, определение нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика, поинтервальное выполнение...
Тип: Изобретение
Номер охранного документа: 0002667240
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88d3

Способ изоляции водопритоков в скважине (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения водоизоляционных работ в добывающих скважинах, а также к способам выравнивания профиля приемистости в нагнетательных скважинах. Способ изоляции водопритоков в скважину по первому варианту...
Тип: Изобретение
Номер охранного документа: 0002667241
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88f0

Клапан штангового насоса (варианты)

Изобретение относится к области нефтедобывающей промышленности, в частности к области эксплуатации скважин штанговыми насосами в горизонтальных и наклонных скважинах. Клапан штангового насоса содержит корпус, седло, направляющую для шара, поджимаемого к седлу гравитационным толкателем....
Тип: Изобретение
Номер охранного документа: 0002667302
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88fb

Способ фиксации внутренней пластмассовой трубы на концах металлической футерованной трубы

Изобретение относится к области трубопроводного транспорта. Способ включает футерование металлической трубы пластмассовой трубой, удаление концов пластмассовой трубы от торцов металлической трубы на длину, превышающую длину зоны термической деструкции пластмассовой трубы от тепла сварки,...
Тип: Изобретение
Номер охранного документа: 0002667307
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88fe

Способ разработки нефтяного пласта скважиной с горизонтальным окончанием

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке неоднородных терригенных или карбонатных продуктивных пластов скважинами с горизонтальным окончанием. Технический результат - повышение эффективности способа за счет повышения его технологичности и...
Тип: Изобретение
Номер охранного документа: 0002667242
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8936

Способ гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта или залежи высоковязкой нефти. Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений...
Тип: Изобретение
Номер охранного документа: 0002667255
Дата охранного документа: 18.09.2018
Показаны записи 331-340 из 400.
09.06.2019
№219.017.79bd

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины. Обеспечивает простоту конструкции и исключает заклинивание при извлечении из скважины. Пакер-пробка включает ствол с внутренней цилиндрической выборкой, заглушкой и верхним упором,...
Тип: Изобретение
Номер охранного документа: 0002395668
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79d9

Способ добычи из подземной залежи тяжелых и/или высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Технический результат - упрощение технологического процесса осуществления способа, а также повышение эффективности разработки залежи. В способе добычи...
Тип: Изобретение
Номер охранного документа: 0002310744
Дата охранного документа: 20.11.2007
09.06.2019
№219.017.7a18

Пакер для опрессовки колонны труб

Изобретение относится к нефтегазодобывающей промышленности и предназначено для опрессовки колонны труб в скважинах. Опрессовочный пакер колонны труб содержит посадочный инструмент, спускное устройство, выполненное в виде кабельной головки с кабелем, цилиндрический корпус с седлом и центральным...
Тип: Изобретение
Номер охранного документа: 0002313653
Дата охранного документа: 27.12.2007
09.06.2019
№219.017.7ebe

Устройство для освоения нефтяной скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для вторичного вскрытия продуктивного пласта и освоения скважины. Техническим результатом является повышение надежности устройства, сокращение времени проведения операций в скважине, уменьшение материалоемкости...
Тип: Изобретение
Номер охранного документа: 0002439309
Дата охранного документа: 10.01.2012
09.06.2019
№219.017.7ede

Устройство для вторичного вскрытия продуктивного пласта

Изобретение относится к горной промышленности, к нефтегазодобывающей отрасли, а именно к устройствам для вторичного вскрытия продуктивного пласта. Устройство для вторичного вскрытия продуктивного пласта включает скважинный фильтр, в отверстия которого вставлены стаканы, корпус с внутренней...
Тип: Изобретение
Номер охранного документа: 0002434121
Дата охранного документа: 20.11.2011
19.06.2019
№219.017.85fd

Способ разработки месторождения высоковязкой нефти

Изобретение относится к нефтяной промышленности, в частности к добыче высоковязких тяжелых и битуминозных нефтей. Техническим результатом является повышение эффективности использования пластового горения за счет регулировки температуры горения и создания паровой камеры в пласте, а также...
Тип: Изобретение
Номер охранного документа: 0002391497
Дата охранного документа: 10.06.2010
19.06.2019
№219.017.85ff

Способ повышения нефтеотдачи пластов с карбонатными породами

Изобретение относится к нефтедобывающей промышленности, в частности к способам увеличения нефтеотдачи пластов и увеличения интенсификации добычи нефти. Способ повышения нефтеотдачи пластов с карбонатными породами включает закачку в пласт добывающей скважины водного раствора ПАВ - неонола АФ с...
Тип: Изобретение
Номер охранного документа: 0002391496
Дата охранного документа: 10.06.2010
19.06.2019
№219.017.870d

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано при добыче вясоковязких нефтей и битума. Обеспечивает повышение эффективности способа за счет упрощения монтажа пакера в скважине и возможности его...
Тип: Изобретение
Номер охранного документа: 0002350745
Дата охранного документа: 27.03.2009
19.06.2019
№219.017.8711

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано при добыче вясоковязких нефтей и битума. Обеспечивает повышение эффективности способа за счет упрощения монтажа пакера в скважине и возможности его...
Тип: Изобретение
Номер охранного документа: 0002350744
Дата охранного документа: 27.03.2009
19.06.2019
№219.017.8774

Способ приготовления тампонажной композиции в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам приготовления тампонажной композиции в скважине с целью проведения ремонтно-изоляционных работ, включает спуск в эксплуатационную колонну перфорированного патрубка на насосно-компрессорных трубах,...
Тип: Изобретение
Номер охранного документа: 0002373376
Дата охранного документа: 20.11.2009
+ добавить свой РИД