×
25.08.2017
217.015.acbf

Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002612676
Дата охранного документа
13.03.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение направлено на повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию и может использоваться в воздушных электростанциях, способствуя повышению их мощности и экономичности. Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию включает в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами. Воздух, поступающий с торца камеры нагрева, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха. Технический результат - повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии циркуляции воздуха по спирали в тепловую энергию. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам использования тепловой энергии Солнца и механической энергии движения воздуха для получения электрической энергии с целью повышения эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию и может использоваться в воздушных электростанциях, способствуя повышению их мощности и экономичности.

В воздушных электростанциях преобразование тепловой энергии Солнца и кинетической энергии движущегося воздуха в электрическую энергию происходит за счет взаимодействия перемещаемого по спирали потока воздуха с ротором на вертикальной оси, соединенным с генератором, производящим электрическую энергию. При этом кинетическая энергия воздуха увеличивается за счет тепловой энергии нагрева воздуха солнечным излучением в специальной камере нагрева, механической энергии движущегося воздуха, определяемой величиной и направлением скорости ветра и частью энергии вращения атмосферы Земли, передаваемой посредством мощности массовой силы Кориолиса, создающей циркуляцию ускорения воздуха, при соответствующем направлении скорости его движения по отношению к вращению Земли [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 51-53, 64-65, 158-159], [Баутин С.П., Обухов А.Г. Математическое моделирование разрушительных атмосферных вихрей. - Новосибирск: Наука, 2012. - с. 47-49].

Для существенного увеличения мощности воздушной электростанции, ее экономичности путем повышения эффективности процесса преобразования тепловой энергии Солнца и механической энергии движения воздуха в кинетическую энергию циркуляционного движения воздуха по спирали необходимо снизить диссипацию (рассеивание) кинетической энергии циркуляционного движения воздуха по спирали посредством действия на него массовой силы Кориолиса, создающей циркуляцию ускорения воздуха.

При этом необходимо исходить из принципа наименьшего действия Даламбера, в соответствии с которым минимальная диссипация (рассеивание) механической энергии имеет место в условиях однородного поля скоростей воздуха, т.е. при нулевой скорости сдвига, что соответствует условию постоянства расходной конвективной скорости воздуха, то есть отсутствию его конвективного ускорения [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

Известен способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализуемый в воздушной электростанции, содержащей камеру нагрева воздуха, образованную нижней плоской горизонтальной поверхностью и параллельной ей верхней светопроницаемой плоской горизонтальной поверхностью для нагревания находящегося в ней поступающего к торцу воздуха, и установленную в центре верхней горизонтальной поверхности камеры нагрева вертикальную вытяжную трубу, по оси которой расположен ротор, соединенный с генератором, предназначенным для производства электрической энергии, причем ротор связан механически с приводным двигателем, а приводной двигатель электрической цепью связан с источником питания (аккумулятором) солнечных батарей, расположенных по периметру верхней горизонтальной поверхности нагревательной камеры [Патент № DE 4104770А1 (ФРГ) Воздушная электростанция. Кл. F03D 9/00].

В начале дня источник питания (аккумулятор) солнечной батареи приводит во вращение приводной двигатель, когда еще ротор не может начать вращение в силу недостаточного нагрева воздуха от тепловой энергии солнечных лучей.

Таким образом, с помощью этого источника питания (аккумулятора) солнечной батареи приводной двигатель начинает вращать ротор и воздух, преодолевая сопротивление сил трения приходит в движение в камере нагрева и вертикальной вытяжной трубе. Полученная от источника питания солнечной батареи электрическая энергия эффективно используется для обеспечения начала устойчивого движения, преодоления сил трения перемещению воздуха и момента сопротивления вращению ротора и генератора, что способствует более быстрому нагреву воздуха в камере и соответственно более раннему производству электрической энергии, эффективному преобразованию тепловой энергии в электрическую.

Однако данный способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализованный в вышеуказанной воздушной электростанции, не позволяет существенно повысить эффективность увеличения кинетической энергии циркуляционного движения по спирали в вытяжной трубе за счет энергии ветра, поступающего в тангенциальном направлении в вытяжную трубу, закручивая при этом дополнительно поток внутри вытяжной трубы по спирали.

Наиболее близким по исполнению к предлагаемому способу преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии воздуха при его циркуляционном движении по спирали в камере нагрева и, соответственно, увеличения энергии, передаваемой генератору для производства электрической энергии, является способ, реализуемый в воздушной башенной электростанции «Торнадо», содержащей камеру нагрева воздуха, образованную нижней плоской горизонтальной поверхностью и параллельной ей верхней светопроницаемой плоской горизонтальной поверхностью для нагревания находящегося в ней, поступающего к торцу воздуха, и установленную в центре верхней горизонтальной поверхности камеры нагрева вертикальную вытяжную трубу, по высоте которой шарнирно установлены продольные впускные клапаны, выполненные из светопрозрачных теплоизолирующих листов с внутренним светопоглощающим слоем. По оси вытяжной трубы расположен ротор, соединенный с генератором, предназначенным для производства электрической энергии, причем ротор связан механически с приводным двигателем, а приводной двигатель электрической цепью связан с источником питания (аккумулятором) солнечных батарей, расположенных по периметру верхней горизонтальной поверхности нагревательной камеры [Патент KZ 27341 А4 (Республика Казахстан). Башенная электростанция «Торнадо», опубл. 16.09.2013 г.].

Данный способ, реализованный в вышеуказанном устройстве, с учетом более быстрого нагрева воздуха, создания устойчивого циркуляционного движения по спирали в камере нагрева и вытяжной трубе позволяет дополнительно использовать энергию ветра для закручивания потока внутри вытяжной трубы, который по спирали движется вверх, ускоряясь, тем самым способствуя более эффективному преобразованию тепловой энергии Солнца, механической энергии движения воздуха в электрическую энергию, повышая мощность и экономичность воздушных электростанций.

Однако данный способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализованный в вышеуказанной воздушной электростанции, не позволяет существенно повысить эффективность увеличения кинетической энергии циркуляционного движения воздуха по спирали в камере нагрева, поскольку в силу деформации сдвига воздуха при движении его по камере нагрева в направлении к вытяжной трубе из-за изменения конвективной скорости, то есть наличия конвективного ускорения воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе, происходит существенная диссипация (рассеивание) кинетической энергии циркуляционного движения воздуха. Это обусловлено тем, что в силу уменьшения площади поперечного сечения в камере нагрева и уменьшения плотности воздуха по мере его движения в направлении к вертикальной вытяжной трубе происходит увеличение конвективной скорости Vr, что обусловливает деформацию воздуха и возникновение конвективного ускорения в этом направлении, в результате чего существенно возрастает диссипация (рассеивание) механической энергии циркуляции воздуха. Указанное существенно уменьшает кинетическую энергию циркуляции воздуха, передаваемую им в вытяжной трубе генератору, для производства электрической энергии. Причем малые значения скорости циркуляции, т.е. небольшие значения чисел Рейнольдса, приводят к существенному влиянию сил вязкости на диссипацию (рассеивание) энергии [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 362-364].

Сущность предлагаемого изобретения заключается в достижении максимального увеличения кинетической энергии воздуха при его циркуляционном движении по спирали в камере нагрева за счет уменьшения ее диссипации (рассеивания).

Этот способ позволяет за счет формирования рациональных кинематических параметров движения воздуха, то есть величины и направления его конвективной скорости, с учетом уменьшения плотности в результате нагрева добиться устранения деформации, т.е. скорости сдвига воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе, что способствует существенному снижению диссипации (рассеивания) кинетической энергии циркуляционного движения воздуха.

Обеспечение постоянной конвективной скорости движения нагретого воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе за счет геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы, то есть обеспечение однородности поля скоростей воздуха в направлении к вытяжной трубе, существенно снижает диссипацию (рассеивание) механической энергии циркуляционного движения воздуха [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироваться в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры нагрева к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Д. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе при его движении в камере нагрева способствует снижению диссипации (рассеивания) кинетической энергии циркуляции воздуха, движущегося по спирали, при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

Технический результат - повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии циркуляции воздуха в тепловую энергию.

Указанный результат достигается тем, что способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию включает в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами с созданием устойчивого вращательного движения воздуха по спирали за счет перепада давления, обусловленного снижением плотности нагретого воздуха, и циркуляционного движения в камере нагрева вследствие действия кориолисовой силы, создающей циркуляцию ускорения, дополнительного подкручивания движущегося по спирали вверх в вытяжной трубе воздуха за счет энергии ветра, поступающего через впускные клапаны холодного воздуха, и тем самым обеспечение вращения ротора, соединенного одним валом с генератором, вырабатывающим электрический ток, и электрическим приводом, соединенным с источником питания солнечных батарей, расположенных по периметру верхней светопроницаемой поверхности, согласно изобретению воздух, поступающий с торца камеры нагрева через входные спиралевидные лопатки в направлении к установленной в центре на ее светопроницаемой поверхности вертикальной вытяжной трубе, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха.

Указанный результат достигается за счет обеспечения постоянной конвективной скорости движения нагретого воздуха в направлении торца камеры нагрева к вертикальной вытяжной трубе за счет геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы, то есть обеспечения однородности поля скоростей воздуха в направлении к вытяжной трубе [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироватъся в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры нагрева к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе при его движении в камере нагрева способствует снижению диссипации (рассеивания) кинетической энергии циркуляции движущегося по спирали воздуха при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

На фиг. 1 изображена воздушная электростанция - продольный разрез, на фиг. 2 изображена воздушная электростанция - поперечный разрез.

Воздушная электростанция содержит камеру нагрева воздуха 1, образованную нижней плоской горизонтальной поверхностью 2 и верхней светопроницаемой поверхностью 3, формирующими по периметру цилиндрическую поверхность - торец 4, между верхней и нижней поверхностями камеры нагрева установлены входные спиральные лопатки 5 с тангенциальным входом в направлении по ходу часовой стрелки в случае Северного полушария и в противоположном - в Южном, а в центре светопроницаемой поверхности камеры нагрева установлена вертикальная вытяжная труба 6, по высоте которой шарнирно установлены продольные впускные клапаны 7, выполненные из светопрозрачных теплоизолирующих листов с внутренним светопоглощающим слоем. По оси вытяжной трубы 6 расположен ротор 8, соединенный с генератором 9, предназначенным для производства электрической энергии, причем ротор связан механически с электрическим приводом 10, который электрической цепью связан с источником питания (аккумулятором) солнечных батарей 11, расположенных по периметру светопроницаемой конической поверхности 3 нагревательной камеры 1.

Постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе в камере нагрева в соответствии с законом сохранения массы и уравнения неразрывности для сжимаемого газа достигается за счет формирования соответствующих геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 54-56]. Из уравнения неразрывности следует:

где:

hi - текущее значение высоты камеры нагрева,

hk - высота камеры нагрева в месте соприкосновения с вытяжной трубой,

ri - текущее значение радиус-вектора траектории движения воздуха в камере нагрева,

ρ - плотность воздуха,

Q - массовый расход воздуха в камере нагрева,

dT - диаметр вытяжной трубы.

Откуда следует, что постоянство скорости движения воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе обеспечивается при условии:

где:

S, Si, Sk - площади камеры нагрева в ее торце, текущем сечении, определяемом радиусом ri, и в месте соприкосновения с вытяжной трубой соответственно,

r - радиус камеры нагрева в ее торце,

h - высота камеры нагрева в ее торце.

Таким образом, в соответствии с законом сохранения массы и уравнением неразрывности постоянство конвективной скорости воздуха в камере нагрева в направлении к вертикальной вытяжной трубе, то есть отсутствие конвективного ускорения в каждой точке траектории его движения в камере нагрева в каждый данный момент времени, обеспечивается за счет профилирования камеры нагрева и вытяжной трубы в соответствии с вышеуказанными формулами и их изготовления из материалов, имеющих коэффициент расширения, равный коэффициенту объемного расширения воздуха.

В процессе работы воздушной электростанции воздух в камере нагрева 1, образованной нижней плоской горизонтальной поверхностью 2 и верхней светопроницаемой поверхностью 3, нагревают за счет тепловой энергии солнечных лучей, проникающих через светопроницаемую поверхность 3. За счет перепада давления, обусловленного снижением плотности нагретого воздуха, создается устойчивое вращательное движение воздуха по спирали при перемещении его от торца 4 камеры нагрева 1 через входные спиральные лопатки 5 в направлении к установленной в центре камеры нагрева 1 на ее светопроницаемой поверхности 3 вертикальной вытяжной трубе 6.

Под действием кориолисовой силы воздух, движущийся в камере нагрева 1 от ее торца 4 к вертикальной вытяжной трубе 6, приобретает циркуляцию ускорения, что приводит к увеличению циркуляции скорости и, как результат, к увеличению энергии циркуляции воздуха при его движении по спирали за счет увеличения скорости Vt. За счет обеспечения геометрических параметров камеры нагрева 1 в соответствии с формулой (3) и обеспечения равенства коэффициента расширения материала камеры нагрева 1 коэффициенту объемного расширения воздуха движение воздуха в направлении от торца 4 камеры нагрева 1 к вертикальной вытяжной трубе 6 происходит с постоянной конвективной скоростью Vr.

Обеспечение постоянной конвективной скорости Vr движения нагретого воздуха от торца 4 камеры нагрева 1 в направлении к вертикальной вытяжной трубе 6 за счет постоянства площади камеры нагрева в направлении от ее торца 4 к вертикальной вытяжной трубе 6, то есть обеспечение однородности поля скоростей воздуха в направлении к вытяжной трубе 6, существенно снижает диссипацию (рассеивание) механической энергии циркуляционного движения воздуха по спирали [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироватъся в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха при его движении от торца 4 камеры нагрева 1 к вертикальной вытяжной трубе 6 способствует снижению диссипации (рассеивания) кинетической энергии циркуляции движущегося по спирали воздуха при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

Кроме того, это уменьшает трение покоя, то есть силы вязкого сопротивления началу движения воздуха по спирали, обусловленному циркуляцией ускорения воздуха при воздействии на него массовой силы Кориолиса в камере нагрева 1, а также обеспечивает постоянство сил вязкого трения при движении воздуха в направлении к вертикальной вытяжной трубе 6 за счет постоянного значения числа Рейнольдса, сохранения ламинарного течения в камере нагрева 1, также способствуя уменьшению диссипации механической энергии циркуляционного движения воздуха по спирали.

Под действием ветра продольные впускные клапаны 7 с наветренной стороны вертикальной вытяжной трубы 6 открываются и за счет кинетической энергии поступающего в тангенциальном направлении холодного воздуха происходит дополнительное закручивание движущегося по спирали вертикально вверх внутри трубы 6 воздуха, что увеличивает его кинетическую энергию циркуляционного движения.

Кинетическая энергия циркуляционного движения воздуха по спирали вверх по вертикальной вытяжной трубе 6 закручивает расположенный по оси вытяжной трубы 6 ротор 8, соединенный с генератором 9, который производит электрическую энергию. Электрический привод 10, связанный механически с ротором 8, обеспечивает электроэнергией источник питания солнечных батарей 11, что способствует нагреву воздуха, снижению его плотности, созданию перепада давления для обеспечения устойчивого циркуляционного движения воздуха по спирали в камере нагрева 1 в утренние и вечерние часы при отсутствии тепловой энергии Солнца.

Таким образом, способ, реализованный в воздушной электростанции указанной конструкции, позволяет за счет обеспечения постоянства конвективной скорости движения нагретого воздуха от торца 4 камеры нагрева 1 в направлении к вертикальной вытяжной трубе 6, требуемых в соответствии с формулами (1-3) геометрическими параметрами и физическими свойствами материала камеры нагрева 1 и вытяжной трубы 6, то есть обеспечения однородности поля скоростей воздуха в направлении к вытяжной трубе 6, существенно снизить диссипацию (рассеивание) механической энергии циркуляционного движения воздуха по спирали. Это позволяет существенно повысить эффективность преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, увеличить мощность и экономичность воздушных электростанций.

Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, включающий в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами с созданием устойчивого вращательного движения воздуха по спирали за счет перепада давления, обусловленного снижением плотности нагретого воздуха, и циркуляционного движения в камере нагрева вследствие действия кориолисовой силы, создающей циркуляцию ускорения, дополнительного подкручивания движущегося по спирали вверх в вытяжной трубе воздуха за счет энергии ветра, поступающего через впускные клапаны холодного воздуха, и тем самым обеспечение вращения ротора, соединенного одним валом с генератором, вырабатывающим электрический ток, и электрическим приводом, соединенным с источником питания солнечных батарей, расположенных по периметру верхней светопроницаемой поверхности, отличающийся тем, что воздух, поступающий с торца камеры нагрева через входные спиралевидные лопатки в направлении к установленной в центре на ее светопроницаемой поверхности вертикальной вытяжной трубе, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха.
Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию
Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию
Источник поступления информации: Роспатент

Показаны записи 1-10 из 15.
20.05.2013
№216.012.417f

Способ повышения давления и экономичности лопастных турбомашин

Изобретение относится к лопастным турбомашинам и касается способа передачи потенциальной и кинетической энергии жидкой или газообразной среде. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает подачу среды через всасывающий патрубок турбомашины к входу на объемные...
Тип: Изобретение
Номер охранного документа: 0002482337
Дата охранного документа: 20.05.2013
10.08.2014
№216.012.e76c

Рабочее колесо центробежного вентилятора

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов. В рабочем колесе центробежного вентилятора, содержащем несущий и покрывной диски, установленные между ними загнутые назад профильные лопатки, каждая из которых имеет со стороны рабочей...
Тип: Изобретение
Номер охранного документа: 0002525037
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.ea32

Радиально-вихревая турбомашина

Радиально-вихревая турбомашина содержит спиральный корпус, установленное в нем рабочее колесо с несущим, покрывным дисками и расположенными между ними лопатками. На рабочей и тыльной поверхностях лопаток, в области их заднего края, выполнены продольный и дополнительный выступы, образующие в...
Тип: Изобретение
Номер охранного документа: 0002525762
Дата охранного документа: 20.08.2014
10.03.2015
№216.013.2f8a

Способ повышения давления и экономичности лопастных турбомашин радиального типа

Изобретение относится к лопастным радиальным турбомашинам, перекачивающим жидкую или газообразную среды. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает формирование циркуляционного течения среды вокруг объемных лопаток в межлопаточных каналах рабочего колеса,...
Тип: Изобретение
Номер охранного документа: 0002543638
Дата охранного документа: 10.03.2015
27.07.2015
№216.013.6699

Радиально-вихревая турбомашина

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад...
Тип: Изобретение
Номер охранного документа: 0002557818
Дата охранного документа: 27.07.2015
20.09.2015
№216.013.7ad7

Рабочее колесо центробежного вентилятора

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов с загнутыми вперед лопатками. Рабочее колесо содержит несущий и покрывной диски и установленные между ними загнутые вперед основные и дополнительные укороченные лопатки. Со стороны...
Тип: Изобретение
Номер охранного документа: 0002563044
Дата охранного документа: 20.09.2015
20.02.2016
№216.014.cede

Установка динамического пылеподавления

Изобретение относится преимущественно к горному делу и может быть использовано для подавления пыли, образующейся при дроблении и измельчении горной массы на предприятиях горно-металлургической, угольной, строительной и других отраслей промышленности. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002575372
Дата охранного документа: 20.02.2016
12.01.2017
№217.015.5ab3

Крутонаклонный ленточный конвейер

Изобретение относится к транспортирующим устройствам, в частности к ленточным конвейерам, перемещающим насыпные грузы, в том числе и крупнокусковые, под повышенными углами наклона к горизонту и может быть использовано в качестве подъемника при открытой разработке месторождений. Техническим...
Тип: Изобретение
Номер охранного документа: 0002589529
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.83d6

Способ создания подъемной силы и устройство для его осуществления

Группа изобретений относится к устройствам создания подъемной силы в вязкой текучей среде. Способ создания подъемной силы на поверхности заключается в создании разности давлений, действующих на противоположные стороны поверхности за счет увеличения циркуляции вязкой текучей среды вокруг нее. На...
Тип: Изобретение
Номер охранного документа: 0002601495
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.ab9a

Способ мониторинга сетей связи в условиях ведения сетевой разведки и информационно технических воздействий

Изобретение относится к области телекоммуникаций, а именно к области диагностирования и контроля технического состояния информационно-телекоммуникационных сетей связи в условиях информационно-технических воздействий. Техническим результатом является создание способа мониторинга сетей связи в...
Тип: Изобретение
Номер охранного документа: 0002612275
Дата охранного документа: 06.03.2017
Показаны записи 1-10 из 23.
20.05.2013
№216.012.417f

Способ повышения давления и экономичности лопастных турбомашин

Изобретение относится к лопастным турбомашинам и касается способа передачи потенциальной и кинетической энергии жидкой или газообразной среде. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает подачу среды через всасывающий патрубок турбомашины к входу на объемные...
Тип: Изобретение
Номер охранного документа: 0002482337
Дата охранного документа: 20.05.2013
10.08.2014
№216.012.e76c

Рабочее колесо центробежного вентилятора

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов. В рабочем колесе центробежного вентилятора, содержащем несущий и покрывной диски, установленные между ними загнутые назад профильные лопатки, каждая из которых имеет со стороны рабочей...
Тип: Изобретение
Номер охранного документа: 0002525037
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.ea32

Радиально-вихревая турбомашина

Радиально-вихревая турбомашина содержит спиральный корпус, установленное в нем рабочее колесо с несущим, покрывным дисками и расположенными между ними лопатками. На рабочей и тыльной поверхностях лопаток, в области их заднего края, выполнены продольный и дополнительный выступы, образующие в...
Тип: Изобретение
Номер охранного документа: 0002525762
Дата охранного документа: 20.08.2014
10.03.2015
№216.013.2f8a

Способ повышения давления и экономичности лопастных турбомашин радиального типа

Изобретение относится к лопастным радиальным турбомашинам, перекачивающим жидкую или газообразную среды. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает формирование циркуляционного течения среды вокруг объемных лопаток в межлопаточных каналах рабочего колеса,...
Тип: Изобретение
Номер охранного документа: 0002543638
Дата охранного документа: 10.03.2015
27.07.2015
№216.013.6699

Радиально-вихревая турбомашина

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад...
Тип: Изобретение
Номер охранного документа: 0002557818
Дата охранного документа: 27.07.2015
20.09.2015
№216.013.7ad7

Рабочее колесо центробежного вентилятора

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов с загнутыми вперед лопатками. Рабочее колесо содержит несущий и покрывной диски и установленные между ними загнутые вперед основные и дополнительные укороченные лопатки. Со стороны...
Тип: Изобретение
Номер охранного документа: 0002563044
Дата охранного документа: 20.09.2015
20.02.2016
№216.014.cede

Установка динамического пылеподавления

Изобретение относится преимущественно к горному делу и может быть использовано для подавления пыли, образующейся при дроблении и измельчении горной массы на предприятиях горно-металлургической, угольной, строительной и других отраслей промышленности. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002575372
Дата охранного документа: 20.02.2016
12.01.2017
№217.015.5ab3

Крутонаклонный ленточный конвейер

Изобретение относится к транспортирующим устройствам, в частности к ленточным конвейерам, перемещающим насыпные грузы, в том числе и крупнокусковые, под повышенными углами наклона к горизонту и может быть использовано в качестве подъемника при открытой разработке месторождений. Техническим...
Тип: Изобретение
Номер охранного документа: 0002589529
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.83d6

Способ создания подъемной силы и устройство для его осуществления

Группа изобретений относится к устройствам создания подъемной силы в вязкой текучей среде. Способ создания подъемной силы на поверхности заключается в создании разности давлений, действующих на противоположные стороны поверхности за счет увеличения циркуляции вязкой текучей среды вокруг нее. На...
Тип: Изобретение
Номер охранного документа: 0002601495
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.ab9a

Способ мониторинга сетей связи в условиях ведения сетевой разведки и информационно технических воздействий

Изобретение относится к области телекоммуникаций, а именно к области диагностирования и контроля технического состояния информационно-телекоммуникационных сетей связи в условиях информационно-технических воздействий. Техническим результатом является создание способа мониторинга сетей связи в...
Тип: Изобретение
Номер охранного документа: 0002612275
Дата охранного документа: 06.03.2017
+ добавить свой РИД