×
25.08.2017
217.015.ac22

Результат интеллектуальной деятельности: Способ получения алюминиевого нанопорошка

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению алюминиевого нанопорошка из отходов электротехнической алюминиевой проволоки, содержащих не менее 99,5 % алюминия. Ведут электроэрозионное диспергирование отходов в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 10 В и емкости конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка. Обеспечивается снижение энергетических затрат и повышается экологическая чистота процесса. 6 ил., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения порошкового алюминия, и может быть использовано для восстановления изношенных деталей, в качестве добавки в лакокрасочные покрытия, при изготовлении автомобильных покрышек, в пиротехнике, химии, энергетике для получения гидрореагирующих смесей, взаимодействующих с водой с выделением тепла и водорода, или в качестве металлического горючего во взрывчатых составах и смесевых порохах.

Известные марки алюминиевых порошков различных форм и размеров получают разнообразными способами:

- путем распыления расплава металла сжатым газом с последующей классификацией продукта распыления, патент РФ №2026157, 6 МПК B22F 9/08;

- путем электрического взрыва алюминиевой проволоки в газовой атмосфере азота, патент РФ №2112629, 6 МПК B22F 9/14;

- посредством механического сухого размола алюминиевой заготовки в атмосфере инертного газа в присутствии жировых добавок, в качестве которых используют продукты, получаемые при переработке нефти, патент РФ №2108534, 6 МПК F42B 4/00, F42B 4/30;

- путем распыления расплава нагретым до 300-400°С инертным газом, с температурой расплава - 880°С, дальнейшего охлаждения инертным газом, патент РФ №2081733, 6 МПК B22F 9/08, С22С 1/14;

- путем получения гидрореагирующей смеси, включающей порошок алюминия и порошок магния, легированный никелем, патент РФ №2131841, 6 МПК C01B 3/08, C01B 6/24.

Известен широко применяемый в промышленности способ производства алюминиевых порошков с использованием защитной (инертной по отношению к алюминию) газовой среды - азота с контролируемым содержанием кислорода, в котором с целью экономии азота используется его рециркуляция в производственном цикле распыления [Производство и применение алюминиевых порошков. - М.: Металлургия, 1980, 68 с.]. Такой способ применяется практически на всех алюминиевых заводах России, производящих распыленные порошки. На этих заводах наряду и одновременно с распыленными порошками методом размола порошков в шаровых мельницах с использованием защитной атмосферы (азот с контролируемым содержанием кислорода 2-8%) производятся алюминиевые пудры. Недостатком этого способа является большой расход азота и необходимость организации его производства.

Известно распыление расплавленного алюминия осушенным воздухом при получении крупных порошков, содержащих не более 50% фракций мельче 50-100 мкм. Такой процесс взрывобезопасен, если исключить образование пылевого облака в системе, что достигается соответствующими режимами распыления и установкой масляного фильтра в конце технологической линии, где контролируются пылевые фракции. При рассеве полученных таким способом порошков с целью выделения товарных фракций обязательно использование азота с контролируемым содержанием кислорода (не более 12%), поскольку в этой операции имеет место образование внутри грохота пылевого облака из частиц порошка менее 50 мкм. При одновременном наряду с получением порошков получении пудры размолом порошка в шаровых мельницах также необходимо обязательное использование азота с контролируемым содержанием кислорода (2-8%).

Недостатками известных способов являются высокая энергоемкость плавильно-распылительного передела и их ограниченная применимость - только к отдельным видам алюминиевых заготовок (проволока, стружка, порошок).

Наиболее близким к заявляемому является способ получения композитных нанопорошков посредством электроискрового диспергирования алюминия в диэлектрической среде, в качестве которой используют оксикарбоновую и дикарбоновую кислоты, авторское свидетельство СССР №1548950 7 МПК B22F 9/14. Существенным отличием предложенного способа является то, что не нужно использовать растворы солей и кислот, это делает процесс более дешевым и безопасным для здоровья. Так как при электроэрозионном диспергировании в дистиллированной воде не выделяется вредных веществ.

Заявляемое изобретение направлено на решение задачи получения алюминиевых нанопорошков из отходов с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения алюминиевого нанопорошка из отходов, отличающимся от прототипа тем, что отходы электротехнической алюминиевой проволоки (ГОСТ 14838-78) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95 - 105 Гц; напряжении на электродах 90 - 110 В и емкости конденсаторов 65 мкФ.

На фигуре 1 описаны этапы получения алюминиевого нанопорошка; на фигуре 2 – схема процесса ЭЭД, на фигуре 3 – фотография полученного алюминиевого порошка, на фигуре 4 – рентгенограмма алюминиевого порошка, на фигуре 5(А), (Б) и 6 − микрофотографии наночастиц алюминиевого порошка; на фиг. 5(Б) в таблице 1 − фазовый состав алюминиевого порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилови Е.Ф. Электроэрозионная обработка материалов. - Л.: Машиностроение, Ленингр. отд., 1983. – 160 с.]. Получение алюминиевого порошка на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1, в четыре этапа:

− 1 этап – подготовка к процессу электроэрозионного диспергирования;

− 2 этап – процесс электроэрозионного диспергирования;

− 3 этап – выгрузка порошка из реактора и его центрифугирование;

− 4 этап – сушка и взвешивание нанопорошка алюминия.

Получаемые этим способом порошковые материалы имеют в основном сферическую и эллиптическую форму частиц. Причем изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов), можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку алюминиевых отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой – дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе – этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 2 прикладывается к электродам 5 и далее к алюминиевым отходам 8 (в качестве электродов также служат алюминиевые отходы). При достижении напряжения определенной величины происходит электрический пробой рабочей среды 10, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 9). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы алюминиевого нанопорошка 7.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ нанопорошка.

При этом достигается следующий технический результат: получение нанопорошков алюминия с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить алюминиевые порошки без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве алюминиевого электроэрозионного порошка составляют 2,3 кг/кВт·ч, что ниже других способов получения алюминиевых нанопорошков. Электроэрозионное диспергирование позволяет эффективно утилизировать алюминиевые отходы с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок алюминия.

Нанопорошковые материалы, получаемые ЭЭД алюминиевых отходов, могут эффективно использоваться при изготовлении и восстановлении деталей машин различными способами, порошок является одним из компонентов холодной сварки, порошковая сварочная проволока также производится с применением порошка, алюминиевый порошок часто добавляется в лакокрасочные покрытия, при этом они приобретают сразу несколько новых качеств:

– красивый металлический оттенок;

– устойчивость к физическим факторам;

– устойчивость к действию агрессивных химических веществ.

В автомобильной промышленности при изготовлении автомобильных покрышек, что позволяет получить более износостойкий материал, который может лучше отдавать тепло. Данный легкий металл устойчив к коррозии и обладает иными положительными качествами, поэтому изготовленный из него порошок часто используют для нанесения покрытий на стальные изделия. Это осуществляется при помощи таких технологий, как плазменная наплавка и напыление, и многих других областях промышленности и народного хозяйства. При создании антифрикционных присадок используют наноразмерные порошки, так как более крупные частицы приводят к более быстрому износу узлов трения деталей машин, кроме того, крупные частицы способны оседать в маслах и СОЖ и забивать фильтры в двигателях. При создании катализаторов также используют нанопорошки, так как с уменьшением размера частиц возрастает их удельная поверхность, а следовательно, химическая и каталитическая активность.

Пример 1

Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью, – дистиллированной водой. При этом использовали следующие электрические параметры установки:

− частота следования импульсов 95…105 Гц;

− напряжение на электродах 90…110 В;

− емкость конденсаторов 65 мкФ.

Полученный алюминиевый порошок (Фигура 3) исследовали различными методами. Фазовый анализ порошка проводили на порошковом рентгеновском дифрактометре GBC EMMA с камерой для высокотемпературных исследований (до 1600°С) (таблица 1). На основании фигуры 4 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования в дистиллированной воде, являются трехводный оксид алюминия (Al2O3·3H2O), алюминий (Al) и метагидроксид алюминия (AlO(OH)).

Для изучения формы и морфологии полученного алюминиевого нанопорошка были выполнены снимки на растровом электронном микроскопе «EOL JSM-6610». На основании фигуры 5А(частота следования импульсов 95 Гц; напряжение на электродах 90 В; емкость конденсаторов 65 мкФ) и 5Б(частота следования импульсов 105 Гц; напряжение на электродах 110 В; емкость конденсаторов 65 мкФ) нанопорошок, полученный методом ЭЭД из алюминиевых отходов, в основном состоит из частиц правильной сферической формы (или эллиптической) с включениями частиц неправильной формы (конгломератов).

Пример 2

Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью – дистиллированной водой. При этом использовали следующие электрические параметры установки:

− частота следования импульсов 50 Гц;

− напряжение на электродах 60 В;

− емкость конденсаторов 55 мкФ.

Для изучения формы и морфологии полученного алюминиевого нанопорошка были выполнены снимки на растровом электронном микроскопе «EOL JSM-6610». На основании фигуры 6 порошок, полученный методом ЭЭД из алюминиевых отходов при данных режимах, получается более крупноразмерным, а сам процесс диспергирования менее производительным.

Пример 3

Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью – дистиллированной водой. При этом использовали следующие электрические параметры установки:

− частота следования импульсов 150 Гц;

− напряжение на электродах 160 В;

− емкость конденсаторов 65 мкФ.

При данных режимах процесс диспергирования не стабилен и носит взрывной характер.

Способ получения алюминиевого нанопорошка, отличающийся тем, что отходы электротехнической алюминиевой проволоки, содержащие не менее 99,5% алюминия, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 110 В и емкости разрядных конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка.
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Способ получения алюминиевого нанопорошка
Источник поступления информации: Роспатент

Показаны записи 41-50 из 323.
13.01.2017
№217.015.780f

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике и предназначено для определения параметров четырехэлементных двухполюсников или параметров датчиков с четырехэлементной схемой замещения. Технический результат: уменьшение погрешности измерения за счет...
Тип: Изобретение
Номер охранного документа: 0002598977
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78c2

Способ получения медного порошка из отходов

Изобретение относится к получению медного порошка из отходов электротехнической медной проволоки. Отходы, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 28-100 Гц, напряжении на электродах 150-220 В и...
Тип: Изобретение
Номер охранного документа: 0002599476
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7dd7

Армированная кирпичная кладка

Изобретение относится к строительству и может быть использовано при строительстве многоэтажных зданий в сейсмических районах. Технический результат: поддержание надежной эксплуатации в течение длительного времени армированной кирпичной кладки за счет устранения коррозийного разрушения...
Тип: Изобретение
Номер охранного документа: 0002600951
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.84d3

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности, оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения. Мостовой измеритель параметров двухполюсников содержит генератор...
Тип: Изобретение
Номер охранного документа: 0002602997
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85dd

Способ получения лактобионовой кислоты

Изобретение относится к способу получения лактобионовой кислоты и может быть использовано в химической промышленности. Предложен способ получения лактобионовой кислоты из лактобионата натрия ионным обменом на катонитах, отличающийся тем, что используют катиониты КУ-2.8-ЧС, Amberlite TM FPC23 H,...
Тип: Изобретение
Номер охранного документа: 0002603195
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8881

Управляемый коммутатор элементов электрической цепи

Изобретение относится к вычислительной технике, информационно-измерительной технике, автоматике и промышленной электронике. Технический результат - уменьшение значения прямого сопротивления и уменьшение значения остаточного напряжения управляемого коммутатора элементов электрической цепи. Для...
Тип: Изобретение
Номер охранного документа: 0002602368
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8adb

Способ очистки поверхностей меди и ее сплавов от продуктов коррозии и окисления соединениями меди (ii)

Изобретение относится к очистке элементов технологического и бытового оборудования из меди и ее сплавов от продуктов коррозии и продуктов окисления соединениями меди (II) и может быть использовано в различных областях практической деятельности, в научных исследованиях и в аналитическом...
Тип: Изобретение
Номер охранного документа: 0002604162
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8af4

Способ 2d-монтажа (внутреннего монтажа) интегральных микросхем

Изобретение относится к радиоэлектронике и может быть использовано при изготовлении печатных плат, применяемых при конструировании радиоэлектронной техники. Технический результат - повышение степени интеграции и снижение массогабаритных показателей ИМС. Достигается тем, что используется...
Тип: Изобретение
Номер охранного документа: 0002604209
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdf

Поливомоечная машина

Изобретение относится к машинам для летнего содержания автомобильных дорог. Поливомоечная машина содержит базовый автомобиль с цистерной и основные сопла. На внутренней поверхности основных сопел расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения...
Тип: Изобретение
Номер охранного документа: 0002604598
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.91fc

Способ измерений и обработки начальных неправильностей формы тонкостенных цилиндрических оболочек

Изобретение относится к измерительной технике в машиностроении и может быть использовано для контроля формы цилиндрических поверхностей тонкостенных цилиндрических оболочек в научных исследованиях и производственной практике. Достигаемый технический результат изобретения заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002605642
Дата охранного документа: 27.12.2016
Показаны записи 41-50 из 140.
13.01.2017
№217.015.78c2

Способ получения медного порошка из отходов

Изобретение относится к получению медного порошка из отходов электротехнической медной проволоки. Отходы, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 28-100 Гц, напряжении на электродах 150-220 В и...
Тип: Изобретение
Номер охранного документа: 0002599476
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7dd7

Армированная кирпичная кладка

Изобретение относится к строительству и может быть использовано при строительстве многоэтажных зданий в сейсмических районах. Технический результат: поддержание надежной эксплуатации в течение длительного времени армированной кирпичной кладки за счет устранения коррозийного разрушения...
Тип: Изобретение
Номер охранного документа: 0002600951
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.84d3

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности, оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения. Мостовой измеритель параметров двухполюсников содержит генератор...
Тип: Изобретение
Номер охранного документа: 0002602997
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85dd

Способ получения лактобионовой кислоты

Изобретение относится к способу получения лактобионовой кислоты и может быть использовано в химической промышленности. Предложен способ получения лактобионовой кислоты из лактобионата натрия ионным обменом на катонитах, отличающийся тем, что используют катиониты КУ-2.8-ЧС, Amberlite TM FPC23 H,...
Тип: Изобретение
Номер охранного документа: 0002603195
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8881

Управляемый коммутатор элементов электрической цепи

Изобретение относится к вычислительной технике, информационно-измерительной технике, автоматике и промышленной электронике. Технический результат - уменьшение значения прямого сопротивления и уменьшение значения остаточного напряжения управляемого коммутатора элементов электрической цепи. Для...
Тип: Изобретение
Номер охранного документа: 0002602368
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8adb

Способ очистки поверхностей меди и ее сплавов от продуктов коррозии и окисления соединениями меди (ii)

Изобретение относится к очистке элементов технологического и бытового оборудования из меди и ее сплавов от продуктов коррозии и продуктов окисления соединениями меди (II) и может быть использовано в различных областях практической деятельности, в научных исследованиях и в аналитическом...
Тип: Изобретение
Номер охранного документа: 0002604162
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8af4

Способ 2d-монтажа (внутреннего монтажа) интегральных микросхем

Изобретение относится к радиоэлектронике и может быть использовано при изготовлении печатных плат, применяемых при конструировании радиоэлектронной техники. Технический результат - повышение степени интеграции и снижение массогабаритных показателей ИМС. Достигается тем, что используется...
Тип: Изобретение
Номер охранного документа: 0002604209
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdf

Поливомоечная машина

Изобретение относится к машинам для летнего содержания автомобильных дорог. Поливомоечная машина содержит базовый автомобиль с цистерной и основные сопла. На внутренней поверхности основных сопел расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения...
Тип: Изобретение
Номер охранного документа: 0002604598
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.91fc

Способ измерений и обработки начальных неправильностей формы тонкостенных цилиндрических оболочек

Изобретение относится к измерительной технике в машиностроении и может быть использовано для контроля формы цилиндрических поверхностей тонкостенных цилиндрических оболочек в научных исследованиях и производственной практике. Достигаемый технический результат изобретения заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002605642
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9a90

Управляемый коммутатор напряжений, несущих информацию

Изобретение относится к информационно-измерительной технике, автоматике и промышленной электронике. Технический результат заключается в обеспечении возможности поддерживать коммутатор в замкнутом состоянии продолжительное время без ухудшения параметров: остаточного напряжения коммутатора и его...
Тип: Изобретение
Номер охранного документа: 0002610298
Дата охранного документа: 08.02.2017
+ добавить свой РИД