×
25.08.2017
217.015.abde

Результат интеллектуальной деятельности: Способ получения наноразмерных частиц гексаферрита стронция

Вид РИД

Изобретение

Аннотация: Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита стронция включает смешивание раствора нитрата стронция в дистиллированной воде с раствором нитрата железа в растворе глицерина и дистиллированной воды с достижением атомного отношения Sr/Fe=1:10, непрерывный нагрев и перемешивание при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°С в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°С в течение 1,5 часов и спекание при температуре 1000-1100°С, при этом все процессы нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения частоты 10-25 кГц. Изобретение обеспечивает повышение однородности размеров наночастиц гексаферрита стронция. 3 пр.

Изобретение относится к области наноразмерной технологии и может быть использовано для создания перспективных устройств: новые носители информации с высокой плотностью записи, магнитные сенсоры с высокой чувствительностью и т.п., а также для применения в области медицины.

Существует способ получения гексаферрита стронция керамической технологией (см.: Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: «МИСиС», 2005. - 352 с.). Указанный способ состоит из следующих операций. В начале смешиваются порошки карбоната стронция SrCO3 и двуокиси железа Fe2O3 в необходимой пропорции и брикетируются. Затем брикеты отжигаются при температуре 1150°C во вращающейся печи. После проводят операцию помола в вибромельнице, прессовку, сушку и спекание в течение 6 часов при температуре 1100°C.

Основной недостаток настоящего способа - невозможность получить наноразмерные частицы гексаферрита стронция.

Наиболее близким к предлагаемому способу (прототипом) является способ получения гексаферрита стронция методом совместного осаждения прекурсоров, позволяющий добиться более равномерного распределения размеров зерен (см.: G. Tan, X. Chen. Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics // J. Elect. Mater., V. 42, №5, 2013, P. 906-911). Указанный способ состоит в следующем. Соли нитратов железа (III) и стронция растворяли в растворе глицерина и в воде и затем растворы смешивали при атомарном соотношении Sr/Fe, как 1:10. Смесь непрерывно нагревали и перемешивали при 50°C в течение 1 ч. После этого добавляли аммиак и полиэтиленгликоль и выдерживали раствор при непрерывном перемешивании и нагреве при 80°C в течение 8 ч. Затем дисперсию центрифугировали при скорости 12000 об/мин. Остаток прокаливали при 450°C в течение 1,5 ч. Прессовали 0,1 г порошка в гранулы и отжигали при 1000-1100°C.

Недостаток настоящего способа - недостаточная однородность распределения размеров зерен в гексаферрите стронция.

Технический результат - повышение однородности размеров наночастиц гексаферита стронция.

Технический результат достигается тем, что во время проведения операций непрерывного нагрева и перемешивания на смеси воздействовали непрерывным ультразвуковым облучением с частотой 10÷25 кГц.

Сущность изобретения состоит в следующем.

При воздействии ультразвука вещества, участвующие в реакции, становятся мелкодисперсными, что намного повышает их химическую активность. Вследствие чего значительно увеличивается однородность смеси. Пределы ультразвукового излучения 10÷25 кГц выбраны из следующих соображений. При облучении меньше 10 кГц не было замечено влияния на размеры наночастиц гексаферрита стронция. А при облучении больше 25 кГц - смесь реагировала очень бурно (лавинообразно), что приводило к невозможности дальнейшего продолжения получения гексаферрита стронция.

Способ включает растворение навесок нитрата стронция и нитрата железа (III) в дистиллированной воды и в растворе глицерина и дистиллированной воды соответственно с достижением атомного отношения Sr/Fe=1:10, непрерывный нагрев с перемешиванием при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°С в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°С в течение 1,5 часов и спекание при температуре 1000÷1100°С. Все процессы непрерывного нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения 10÷25 кГц.

Пример 1. Навески нитрата железа (III) 12,3051 г и нитрата стронция 0,6381 г растворяли в 60 мл раствора глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воды соответственно. После смешивания полученных растворов - смесь непрерывно подвергали перемешиванию, нагреву при 50°С и ультразвуковому облучению с частотой 10 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°С и ультразвуковому облучению с частотой 10 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°С в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1100°С.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы SrFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы SrFe12O19 размером 80-160 нм.

Пример 2. Навески нитрата железа (III) 12,3050 г и нитрата стронция 0,6383 г растворяли в 60 мл раствора глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воды соответственно. После смешивания полученных растворов - смесь непрерывно подвергали перемешиванию, нагреву при 50°С и ультразвуковому облучению с частотой 25 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°С и ультразвуковому облучению с частотой 25 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°С в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1100°С.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы SrFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы SrFe12O19 размером 70-140 нм.

Пример 3. Навески нитрата железа (III) 12,3054 г и нитрата стронция 0,6385 г растворяли в 60 мл раствора глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воды соответственно. После смешивания полученных растворов - смесь непрерывно подвергали перемешиванию, нагреву при 50°С и ультразвуковому облучению с частотой 25 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°С и ультразвуковому облучению с частотой 25 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°С в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1000°С.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы SrFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы SrFe12O19 размером 60-130 нм.

Способ получения наноразмерных частиц гексаферрита стронция, включающий смешивание раствора нитрата стронция в дистиллированной воде с раствором нитрата железа в растворе глицерина и дистиллированной воды (с достижением атомного отношения Sr/Fe=1:10), непрерывный нагрев с перемешиванием при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°С в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°С в течение 1,5 часов и спекание при температуре 1000÷1100°С, отличающийся тем, что все процессы нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения частоты 10÷25 кГц.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 345.
25.08.2017
№217.015.a31d

Способ получения волокнистого сорбента для извлечения скандия

Изобретение относится к области получения ионообменных материалов и сорбентов. Предложен способ получения волокнистого ионита для извлечения скандия, включающий аминирование полиакрилонитрильного волокна 35-40%-ным раствором этиленамина при температуре 90-100°C, и фосфорилирование...
Тип: Изобретение
Номер охранного документа: 0002607215
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5b0

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в...
Тип: Изобретение
Номер охранного документа: 0002607857
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.a66b

Высоковольтный преобразователь ионизирующих излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии радиационных излучений в электрическую энергию и может быть также использовано в взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах и сенсорах, расположенных в труднодоступных местах и...
Тип: Изобретение
Номер охранного документа: 0002608313
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a67a

Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Изобретение относится к области многопереходных фотоэлектрических преобразователей (ФЭП), применяемых для солнечных батарей и фотоприемников космического и иного назначения. Монолитный кремниевый фотоэлектрический преобразователь содержит диодные ячейки с расположенными в них перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002608302
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a6f8

Преобразователь оптических и радиационных излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию и может быть использовано во взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах, сенсорах, расположенных в труднодоступных...
Тип: Изобретение
Номер охранного документа: 0002608311
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a74a

Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы

Изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы, и может быть использовано в медицине и технике. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы включает термомеханическую обработку заготовки,...
Тип: Изобретение
Номер охранного документа: 0002608246
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a8d8

Способ очистки цианистых растворов от комплексов цветных металлов перед процессом сорбции

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5...
Тип: Изобретение
Номер охранного документа: 0002611237
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
Показаны записи 71-80 из 216.
25.08.2017
№217.015.a31d

Способ получения волокнистого сорбента для извлечения скандия

Изобретение относится к области получения ионообменных материалов и сорбентов. Предложен способ получения волокнистого ионита для извлечения скандия, включающий аминирование полиакрилонитрильного волокна 35-40%-ным раствором этиленамина при температуре 90-100°C, и фосфорилирование...
Тип: Изобретение
Номер охранного документа: 0002607215
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5b0

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в...
Тип: Изобретение
Номер охранного документа: 0002607857
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.a66b

Высоковольтный преобразователь ионизирующих излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии радиационных излучений в электрическую энергию и может быть также использовано в взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах и сенсорах, расположенных в труднодоступных местах и...
Тип: Изобретение
Номер охранного документа: 0002608313
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a67a

Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Изобретение относится к области многопереходных фотоэлектрических преобразователей (ФЭП), применяемых для солнечных батарей и фотоприемников космического и иного назначения. Монолитный кремниевый фотоэлектрический преобразователь содержит диодные ячейки с расположенными в них перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002608302
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a6f8

Преобразователь оптических и радиационных излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию и может быть использовано во взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах, сенсорах, расположенных в труднодоступных...
Тип: Изобретение
Номер охранного документа: 0002608311
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a74a

Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы

Изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы, и может быть использовано в медицине и технике. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы включает термомеханическую обработку заготовки,...
Тип: Изобретение
Номер охранного документа: 0002608246
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a8d8

Способ очистки цианистых растворов от комплексов цветных металлов перед процессом сорбции

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5...
Тип: Изобретение
Номер охранного документа: 0002611237
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
+ добавить свой РИД