×
25.08.2017
217.015.abd6

Результат интеллектуальной деятельности: Устройство для измерения малоугловой индикатрисы рассеяния

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может найти применение, в частности, в процессах измерения характеристик аэрозольных частиц в двухфазных средах оптическим методом, в химической технологии, коллоидной химии, в технологии диспергирования жидкости форсунками, при контроле загрязнения окружающей среды и в других отраслях техники. Технический результат - повышение точности. Для этого приемник излучения размещен на консоли, ось которой совмещена с центром измерительного объема. Соосно с приемником излучения на консоли установлена лазерная указка, излучение которой направлено от измерительного объема на измерительную шкалу. Измерительная шкала расположена от центра измерительного объема на расстоянии, определяемом неравенством , а угол рассеяния рассчитывается по формуле , где - смещение луча лазерной указки на измерительной шкале при повороте консоли на угол θ, мм; - расстояние между центром измерительного объема и измерительной шкалой, мм; - погрешность измерения на измерительной шкале, мм. 1 ил.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для измерения характеристик аэрозольных частиц в двухфазных средах оптическими методами, и предназначено для определения функции распределения частиц по размерам. Изобретение может найти применение в химической технологии, коллоидной химии, в технологиях диспергирования жидкости форсунками, при контроле загрязнения окружающей среды и в других отраслях техники для определения характеристик аэрозольных систем.

Известен способ определения дисперсного состава аэрозольных частиц, основанный на измерении малоугловой индикатрисы рассеяния зондирующего излучения [1]. При этом индикатрису рассеяния J(θ) - угловое распределение интенсивности рассеянного частицами излучения - измеряют в диапазоне малых углов рассеяния (θ≤10 градусов), в качестве источника монохроматического зондирующего излучения используют оптический квантовый генератор (лазер), а функцию распределения частиц по размерам определяют решением обратной задачи оптики аэрозолей с использованием теории Ми для расчета факторов эффективности рассеяния одиночных частиц [2].

Обратная задача идентификации функции распределения частиц по размерам по измеренной индикатрисе рассеяния относится к классу «некорректно поставленных» задач математической физики [2]. Получение корректного решения обратной задачи возможно лишь при выполнении жестких требований к точности измерения входной экспериментальной информации, в данном случае - к точности измерения как интенсивности рассеянного излучения J(θ), так и угла рассеяния θ. При низкой точности измерения индикатрисы рассеяния возможно получение так называемых «фантомных» решений, не соответствующих реальной функции распределения частиц по размерам [2].

Известно устройство для измерения света, рассеянного под малыми углами [1], включающее выходную диафрагму и приемную линзу. Измерение интенсивности света, рассеянного частицами в измерительном объеме, проводят в фокальной плоскости линзы за пределами фокального пятна, в котором собран прямой пучок света. Свет, рассеянный под данным углом θ, приходит в фокальную плоскость на заданное расстояние от ее центра. Регистрация индикатрисы рассеяния J(θ) проводится на фотопленку с последующим фотометрированием. Недостатком данного устройства является низкая точность операции фотометрирования, а также искажения за счет рассеяния и преломления света в линзе.

Известны устройства для измерения интенсивности рассеянного зондирующего излучения под разными углами одновременно несколькими фотоприемниками [3], [4]. К недостаткам данных устройств относятся ограниченный дискретный набор углов рассеяния, а также необходимость градуировки каждого фотоприемника из-за разброса их рабочих характеристик.

Известны способы измерения малоугловой индикатрисы рассеяния [5, 6], в которых измерительное устройство включает наряду с прямым пучком зондирующего излучения дополнительный пучок опорного излучения, когерентного с прямым пучком, поступающим на рассеивающий образец. Для каждого угла рассеяния регистрируют и обрабатывают полученную интерференционную картину. Недостатком данных способов является сложная процедура определения J(θ), состоящая из пяти этапов для каждого угла рассеяния, а также сложность юстировки прибора и необходимость дополнительной математической обработки измеренных величин.

Наиболее близким по технической сущности является устройство для измерения малоугловой индикатрисы рассеяния [7], в котором зондирующее излучение гелий-неонового лазера, рассеянное аэрозолем в измерительном объеме, регистрируется одним фотоэлектронным умножителем. Фотоэлектронный умножитель помещен в светозащитный корпус с точечной диафрагмой. При перемещении фотоэлектронного умножителя в плоскости, перпендикулярной направлению зондирующего излучения, измеряют интенсивность рассеянного света под различными углами (индикатрису рассеяния). Недостатком этого устройства является низкая точность регистрации угла рассеяния.

Техническим результатом настоящего изобретения является повышение точности определения функции распределения аэрозольных частиц по размерам методом малоугловой индикатрисы рассеяния за счет снижения погрешности измерения как угла рассеяния θ, так и интенсивности рассеянного излучения J(θ).

Технический результат достигается тем, что разработано устройство для измерения малоугловой индикатрисы рассеяния, включающее источник зондирующего излучения - лазер и приемник излучения, рассеянного аэрозолями в измерительном объеме под малыми углами. Приемник излучения расположен на консоли с возможностью ее вращения вокруг оси, совмещенной с центром измерительного объема, на консоли расположена соосно с приемником излучения лазерная указка, излучение которой направлено от измерительного объема на измерительную шкалу, причем измерительная шкала расположена от центра измерительного объема на расстоянии, определяемом неравенством

,

а угол рассеяния рассчитывается по формуле

,

где - смещение луча лазерной указки на измерительной шкале при повороте консоли на угол θ, мм;

- расстояние между центром измерительного объема и измерительной шкалой, мм;

- погрешность измерения на измерительной шкале, мм;

θ - угол рассеяния, град.

Полученный положительный эффект изобретения связан со следующими факторами.

1. Использование консоли позволяет плавно регулировать ее угол поворота и тем самым угол рассеяния θ лазерного излучения (Фиг. 1).

2. Использование одного приемника излучения, расположенного на консоли, позволяет повысить точность измерения интенсивности рассеянного излучения J(θ) по сравнению с использованием набора приемников с разбросом рабочих характеристик и упростить юстировку установки.

3. Угол рассеяния лазерного излучения рассчитывается по измеренным значениям расстояния - между центром измерительного объема и смещения луча лазерной указки при повороте консоли на угол θ (Фиг. 1):

.

4. Использование лазерной указки позволяет увеличить точность измерения угла рассеяния лазерного излучения.

Угол рассеяния рассчитывается по формуле

Поскольку , погрешность измерения θ определяется погрешностью измерения смещения , луча лазерной указки на измерительной шкале.

Зададим относительную погрешность измерения не более 1%:

Тогда из (2) следует:

Подставим (3) в (1), получим

Из (4) следует условие для выбора

Для минимального значения угла рассеяния θ=1 град из (5) следует

Таким образом, для обеспечения погрешности измерения θ с погрешностью не более 1% расстояние должно удовлетворять неравенству

.

В частности, при , величина .

Пример реализации изобретения

На фиг. 1 приведена блок-схема устройства для измерения малоугловой индикатрисы рассеяния, предназначенная для исследования дисперсности капель в факеле распыла форсунки.

Устройство состоит из форсунки для распыливания жидкости 1, создающей факел распыла 2 в измерительном объеме 3. Источник излучения - лазерный модуль 4. Луч лазера поступает в измерительный объем 3 и через систему диафрагм 5 поступает в приемник излучения 6, установленный на консоли 7, имеющей ось вращения 8. Вращение консоли обеспечивается микрометрическим винтом 9. Соосно с приемником излучения на консоли укреплена лазерная указка 10 с лучом, направленным в противоположную от измерительного объема сторону на укрепленную вертикально измерительную шкалу.

Устройство для измерения малоугловой индикатрисы рассеяния работает следующим образом. После юстировки в форсунку 1 под давлением подается рабочая жидкость, в результате чего образуется факел распыла 2. Вращением микрометрического винта 9 изменяется угол наклона консоли 7, и приемник излучения 6 с диафрагмами 5 выходит из прямого лазерного луча. Теперь в приемник излучения 6 через его входную апертуру 5 может попадать только рассеянное под малым углом зондирующее излучение лазера. Регистрирующей аппаратурой измеряется интенсивность рассеянного под этим углом излучения. Лазерная указка 10, расположенная соосно с приемником излучения на консоли, покажет на измерительной шкале 11 точку отсчета, смещение которой от «нулевой» пересчитывается в угол рассеяния излучения. Продолжение этой процедуры по следующим углам вращения консоли позволяет определить индикатрису рассеяния излучения.

Таким образом, пример реализации показывает, что устройство для измерения малоугловой индикатрисы рассеяния обеспечивает повышение точности определения функции распределения аэрозольных частиц по размерам методом малоуглового рассеяния за счет снижения погрешности измерения угла рассеяния и интенсивности рассеяния излучения. Эффективность изобретения подтверждена измерениями дисперсности состава капель в факеле распыла эжекционной и центробежной форсунок.

ЛИТЕРАТУРА

1. Шифрин К.С. Изучение свойств вещества по однократному рассеянию // В сб. «Теоретические и прикладные проблемы рассеяния света» / Под ред. Б.И. Степанова и А.П. Иванова. - Минск: Наука и техника, 1971. - С. 228-244.

2. Архипов В.А., Бондарчук С.С. Оптические методы диагностики гетерогенной плазмы продуктов сгорания: Учебное пособие. - Томск: Изд-во Том. ун-та, 2010. - 265 с.

3. Kudryashova О.В., Akhmadeev I.R., Pavlenko А.А., Arkhipov V.A., Bondarchuk S.S. // Key Engineering Materials. 2010. Vol. 437. P. 179-183.

4. Пат. РФ 2525605, МПК G01N 15/02, G01N 21/47. Способ и устройство для оптического измерения распределения размеров и концентраций дисперсных частиц в жидкостях и газах с использованием одноэлементных и матричных фотоприемников лазерного излучения / В.Г. Певгов, Н.В. Певгова. - Опубл. 20.08.2014.

5. АС СССР 1323927, МПК GO1N 21/47. Способ измерения индикатрисы рассеяния / И.Л. Максимова, Л.П. Шубочкин, В.В.Тучин. Опубл. 15.07.1987. Бюлл. №26.

6. Пат. РФ 2183828, МПК GO1N 21/47. Способ определения малоугловой индикатрисы рассеяния / В.Ф. Мышкин, И.А. Тихомиров, В.Н. Цимбал, Б.П. Иваненко. - Опубл. 20.06.2002.

7. Лагунов А.С., Байвель Л.П., Гусев Б.А., Литвинов В.К. Универсальный электронно-оптический прибор для контроля спектра размеров частиц // Приборы систем управления. 1974, №6. С. 28-30.


Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Устройство для измерения малоугловой индикатрисы рассеяния
Источник поступления информации: Роспатент

Показаны записи 41-50 из 73.
20.12.2014
№216.013.1239

Приемник электромагнитного излучения широкого спектрального диапазона

Изобретение может быть использовано для создания устройств, различного назначения, например, датчиков пламени; датчиков электрической искры; оптической локации в УФ-спектре; оптической связи в УФ-диапазоне; дозиметрии УФ-излучения, быстродействующих УФ-фотоприемников для эксимерных лазеров;...
Тип: Изобретение
Номер охранного документа: 0002536088
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.16ec

Способ получения сложных эфиров амиловых спиртов

Изобретение относится к способам получения сложных эфиров амиловых спиртов и простейших карбоновых кислот C-C. В качестве сырья используют спиртосодержащие отходы производства капролактама. Способ включает этерификацию спиртосодержащих отходов производства капролактама простейшими карбоновыми...
Тип: Изобретение
Номер охранного документа: 0002537292
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1848

Способ зажигания твердого химически активного топлива в жидкой среде

Изобретение относится к области техники для средств механизации проведения поисково-спасательных, подводно-технических и судоподъемных работ. Способ зажигания твердого химически активного топлива в жидкой среде, включающий использование нагревательного элемента. Нагревательный элемент выполняют...
Тип: Изобретение
Номер охранного документа: 0002537644
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2585

Способ получения ультрадисперсного порошка нитрида кремния

Изобретение относится к области порошковой технологии и предназначено для получения ультрадисперсных порошков нитрида кремния. Предложенный способ базируется на методе самораспространяющегося высокотемпературного синтеза (СВС-процесса), в котором в качестве шихты используют смесь порошков...
Тип: Изобретение
Номер охранного документа: 0002541058
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
10.06.2015
№216.013.5361

Устройство для испытаний электронных плат на механические воздействия

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной...
Тип: Изобретение
Номер охранного документа: 0002552866
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6b82

Способ получения металлических порошков распылением расплавов

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин,...
Тип: Изобретение
Номер охранного документа: 0002559080
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c80

Способ испытаний электронных плат на комбинированные механические и тепловые воздействия

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на надежность электронных плат (ЭП) и их компонентов к комбинированным механическим и тепловым воздействиям. Целью изобретения является разработка комбинированного способа испытаний на механические и...
Тип: Изобретение
Номер охранного документа: 0002559334
Дата охранного документа: 10.08.2015
Показаны записи 41-50 из 113.
10.01.2015
№216.013.1848

Способ зажигания твердого химически активного топлива в жидкой среде

Изобретение относится к области техники для средств механизации проведения поисково-спасательных, подводно-технических и судоподъемных работ. Способ зажигания твердого химически активного топлива в жидкой среде, включающий использование нагревательного элемента. Нагревательный элемент выполняют...
Тип: Изобретение
Номер охранного документа: 0002537644
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2585

Способ получения ультрадисперсного порошка нитрида кремния

Изобретение относится к области порошковой технологии и предназначено для получения ультрадисперсных порошков нитрида кремния. Предложенный способ базируется на методе самораспространяющегося высокотемпературного синтеза (СВС-процесса), в котором в качестве шихты используют смесь порошков...
Тип: Изобретение
Номер охранного документа: 0002541058
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
10.06.2015
№216.013.5361

Устройство для испытаний электронных плат на механические воздействия

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной...
Тип: Изобретение
Номер охранного документа: 0002552866
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6b82

Способ получения металлических порошков распылением расплавов

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин,...
Тип: Изобретение
Номер охранного документа: 0002559080
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c80

Способ испытаний электронных плат на комбинированные механические и тепловые воздействия

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на надежность электронных плат (ЭП) и их компонентов к комбинированным механическим и тепловым воздействиям. Целью изобретения является разработка комбинированного способа испытаний на механические и...
Тип: Изобретение
Номер охранного документа: 0002559334
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8d4c

Способ получения модифицированных алюминиевых сплавов

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита NaAlF, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава...
Тип: Изобретение
Номер охранного документа: 0002567779
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9420

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к конструкциям зарядов твердотопливных ракетных двигателей. Ракетный двигатель включает камеру сгорания, пластинчатый заряд твердого топлива из сплошных и перфорированных дисков, боковая поверхность которого покрыта бронирующим...
Тип: Изобретение
Номер охранного документа: 0002569539
Дата охранного документа: 27.11.2015
+ добавить свой РИД