×
25.08.2017
217.015.abc0

Результат интеллектуальной деятельности: ОППОЗИТНЫЙ ВЕТРОТЕПЛОГЕНЕРАТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Оппозитный ветротеплогенератор, в котором теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора. При этом однотипные роторные ветродвигатели осуществляют оппозитное вращение верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора, все межцилиндровое пространство которого заполнено вязким жидким теплоносителем, а в узких зазорах межцилиндрового пространства возникает течение Тейлора. Изобретение направлено на повышение эффективности ветротеплогенератора при низких скоростях ветра и упрощение конструкции. 5 ил.

Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Изобретение может использоваться при строительстве теплостанций. Известны следующие решения:

1. патент US 4424796, 1984 г., F03D 9/00; F24J 3/00;

2. патент FR 2407369, 1979 г., F03D 9/00; F03D 9/02;

3. патент РФ №2088797, 1994 г., F03D 3/00;

4. авторское свидетельство №1252535, 1985 г., F03D 9/00;

5. патент РФ №2380567, 2005 г., F03D 3/00;

6. авторское свидетельство №992800, 1981 г., F03D 3/00.

Наиболее близким по технической сущности заявляемому устройству является ветротеплогенератор (патент РФ №2209340, 2002 г., F03D 9/00), содержащий ветродвигатель, теплогенератор. Ветродвигатель представляет собой комбинацию ротора Савониуса с ветротурбиной с ортогональными аэродинамическими лопастями. Теплогенератор состоит из фрикционной и тепловой камер и фрикционных элементов.

Недостатком известных решений является низкий коэффициент преобразования энергии ветра в диапазоне скоростей (0,5-5) м/с в тепловую энергию, сложность конструкции, обусловленная необходимостью применения редукторов и системы ориентации ветродвигателя относительно направления ветра.

Задачей изобретения является повышение эффективности ветротеплогенератора, упрощение конструкции.

Поставленная задача решается тем, что в оппозитном ветротеплогенераторе, содержащем ветродвигатель и теплогенератор, согласно изобретению содержится два однотипных роторных ветродвигателя, осуществляющих встречное (оппозитное) вращение верхнего и нижнего однотипных соосных многоцилиндровых роторов тепологенератора, все межцилиндровое пространство которого заполнено вязким жидким теплоносителем, при этом в узких зазорах межцилиндрового пространства возникает особое течение Тейлора.

Изобретение работает на принципе преобразования кинетической энергии ветра в тепловую за счет нагрева вязкой жидкости при течении ее в межцилиндровом пространстве. В узких зазорах межцилиндрового пространства возникает особое течение Тейлора, которое характеризуется высокой степенью сдвиговых напряжений в межцилиндровом пространстве с генерацией тепла в жидкости, что и позволяет напрямую передать кинетическую энергию ветра в тепло. Основным техническим результатом является повышение КПД, так как вся утилизированная энергия ветрового потока отбирается теплоносителем и передается через теплообменник потребителю. Повышение эффективности оппозитного ветротеплогенератора происходит за счет применения двух однотипных роторных ветродвигателей для привода особого оппозитного преобразователя (однотипные соосные многоцилиндровые роторы теплогенератора) кинетической энергии ветра в тепловую, обладающего свойством высокоэффективного преобразования при низких скоростях ветра. Отсутствие редукторов и системы ориентации ветродвигателя относительно направления ветра существенно упрощают конструкцию ветротеплогенератора.

Фиг. 1 - общий вид оппозитного ветротеплогенератора.

Фиг. 2 - схема теплогенератора.

Фиг. 3 - фотография макета нижнего многоцилиндрового ротора тепологенератора.

Фиг. 4 - фотография макета верхнего многоцилиндрового ротора теплогенератора.

Фиг. 5 - фотография макета теплогенератора, вид сверху.

ВД - роторный ветродвигатель с вертикальной осью

ЦН - центробежный насос

1 - теплогенератор

2 - теплообменник

3 - аккумулятор

4 - теплоизоляция

5 - вал ветродвигателя

6 - поворотные лопасти ветродвигателя

7 - оси поворотных лопастей ветродвигателя

8 - верхний и нижний радиальные кронштейны

9 - корпус оппозитного ветротеплогенератора

10 - опорная мачта оппозитного ветротеплогенератора

11 - подающий и отводящий патрубки

12 - верхняя и нижняя неподвижные крышки теплогенератора

13, 16 - нижний и верхний диски однотипных соосных многоцилиндровых роторов теплогенератора

14 - опорный подшипник

15 - боковая цилиндрическая стенка

17 - оси однотипных соосных многоцилиндровых роторов теплогенератора

18 - подшипники качения

В теплогенераторе 1 заложена конструкция (фиг. 2) с встречно вращающимися однотипными соосными многоцилиндровыми роторами (фиг. 3 и фиг. 4). На фиг. 1 приведена схема оппозитного ветротеплогенератора, состоящего из двух однотипных роторных ветродвигателей (ВД), которые приводят в движение два однотипных соосных многоцилиндровых ротора теплогенератора.

В предложенной конструкции рабочие колеса ветродвигателя имеют поворотные лопасти (6), поворотные лопасти ветродвигателя закреплены на осях 7, оси поворотных лопастей ветродвигателя связаны с радиальными верхним и нижним кронштейнами (8). Максимальное сопротивление ветру оказывает только часть поворотных лопастей ветродвигателя, другая часть за счет смены положения при повороте колеса имеет минимальное сопротивление. Валы ветродвигателей 5 сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора 17. Оси верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора зафиксированы в подшипниках качения 18, при этом ось верхнего многоцилиндрового ротора имеет шариковый подпятник 14, опирающийся на ось нижнего многоцилиндрового ротора.

Оси верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора закреплены в неподвижных крышках теплогенератора 12, являющихся элементами верхней и нижней частей корпуса оппозитного ветротеплогенератора 9. Корпус теплогенератора, состоящий из верхней и нижней частей и боковой цилиндрической стенки 15 между ними, расположен между двумя однотипными роторными ветродвигателями (ВД) и является опорным элементом всего агрегата.

На нижнем и верхнем дисках однотипных соосных многоцилиндровых роторов теплогенератора (13, 16) расположено расчетное количество цилиндров заданной высоты и различного диаметра. При размещении этих однотипных многоцилиндровых роторов на одной оси цилиндрические конструкции верхней и нижней частей образуют между собой узкие зазоры межцилиндрового пространства. Ширина зазоров определяется разностью диаметров соседних цилиндров. Диаметры цилиндров и их количество определяются необходимой площадью поверхности однотипных соосных многоцилиндровых роторов теплогенератора для заданной производительности.

Верхняя и нижняя неподвижные крышки теплогенератора имеют подающий и отводящий патрубки 11 для подачи и отвода теплоносителя. Циркуляция теплоносителя осуществляется за счет специальных центробежных лопастей (ЦН). Таким образом, получается многолопастной насос, функционирующий в пространстве между верхней и нижней неподвижными крышками теплогенератора и верхним и нижним дисками однотипных соосных многоцилиндровых роторов теплогенератора с функциями нагнетающего и отсасывающего насосов.

В состав оппозитного ветротеплогенератора входит аккумулятор 3 с теплообменником 2, через который генерируемое тепло передается потребителю. Корпус теплогенератора и аккумулятор имеют теплоизоляцию 4.

Оппозитный ветротеплогенератор закреплен в корпусе из профилированного металла и устанавливается на опорной мачте 10 соответствующей высоты.

Конструкция верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора определяется следующими параметрами:

- количеством цилиндров (количество цилиндров определяет мощность ветрогенератора);

- отношением радиусов соседних цилиндров η=а/b, где а является внешним радиусом цилиндра (i) меньшего диаметра и b являются внутренним радиусом (о) цилиндра большего диаметра;

- характеристическим соотношением Г=L/(b-a), где L - высота столба жидкости в зазоре;

- числа Рейнольдса внутреннего Ri,=a(b-a)'Ωi/v и внешнего цилиндра R0,=b(b-a)'Ω0/v, где 'Ωi - угловая скорость внутреннего, 'Ω0 - угловая скорость внешнего цилиндра, v - кинематическая вязкость теплоносителя.

Устройство работает следующим образом. При скорости ветра ~0,5 м/с происходит ориентация части поворотных лопастей ветродвигателя 6 перпендикулярно направлению ветра. Диаметрально расположенные лопасти занимают положение «флюгера» по ветру. При достаточной скорости ветра начинается встречное вращение верхнего и нижнего однотипных соосных многоцилиндровых роторов тепологенератора (фиг. 3, фиг. 4). В зависимости от скорости ветра начинается процесс генерации тепла, которое передается за счет действия центробежного насоса (ЦН) через теплообменник 2 в аккумулятор 3 и потребителю.

Пример. В зависимости от мощности ветродвигателя и максимальной частоты вращения однотипных соосных многоцилиндровых роторов тепологенератора определяется количество зазоров межцилиндрового пространства их высота (высота столба жидкости в зазоре) и ширина. Опытный образец оппозитного ветротеплогенератора имел отношение радиусов цилиндров роторов теплогенератора η=(0,9944-0,9936), характеристическое отношение - Г=L/b-а=(16,8-25), радиусы цилиндров верхнего ротора Ri=(32-875) мм, радиусы цилиндров нижнего ротора R0=(33-877) мм, кинематическая вязкость рабочей жидкости v≈30 сП.

Эксперимент показал, что при скорости ветра ~6 м/с оппозитный ветротеплогенератор имел мощность ~300 Вт (частота вращения многоцилиндровых роторов тепологенератора Ωi=(2,5-30) 1/с).

Использование заявляемого изобретения позволяет повысить эффективность ветротеплогенератора при низких скоростях ветра и упростить конструкцию устройства.

Оппозитный ветротеплогенератор, содержащий ветродвигатель и теплогенератор, отличающийся тем, что теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора, при этом однотипные роторные ветродвигатели осуществляют оппозитное вращение верхнего и нижнего однотипных соосных многоцилиндровых роторов теплогенератора, все межцилиндровое пространство которого заполнено вязким жидким теплоносителем, а в узких зазорах межцилиндрового пространства возникает течение Тейлора.
ОППОЗИТНЫЙ ВЕТРОТЕПЛОГЕНЕРАТОР
ОППОЗИТНЫЙ ВЕТРОТЕПЛОГЕНЕРАТОР
ОППОЗИТНЫЙ ВЕТРОТЕПЛОГЕНЕРАТОР
ОППОЗИТНЫЙ ВЕТРОТЕПЛОГЕНЕРАТОР
Источник поступления информации: Роспатент

Показаны записи 41-50 из 95.
25.08.2017
№217.015.ac06

Способ измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (лда)

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер...
Тип: Изобретение
Номер охранного документа: 0002612202
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d090

Интенсифицированная система охлаждения одиночного мощного светодиода

Изобретение относится к оптоэлектронике, в частности к системам охлаждения мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного мощного светодиода. Достигается тем, что интенсифицированная...
Тип: Изобретение
Номер охранного документа: 0002621320
Дата охранного документа: 02.06.2017
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
Показаны записи 41-50 из 67.
25.08.2017
№217.015.ac06

Способ измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (лда)

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер...
Тип: Изобретение
Номер охранного документа: 0002612202
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d090

Интенсифицированная система охлаждения одиночного мощного светодиода

Изобретение относится к оптоэлектронике, в частности к системам охлаждения мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного мощного светодиода. Достигается тем, что интенсифицированная...
Тип: Изобретение
Номер охранного документа: 0002621320
Дата охранного документа: 02.06.2017
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
+ добавить свой РИД