×
25.08.2017
217.015.ab77

Результат интеллектуальной деятельности: ПОЛУПРОВОДНИКОВЫЙ СЕНСОРНЫЙ ЭЛЕМЕНТ ДЛЯ ОПРЕДЕЛЕНИЯ ИОНОВ СВИНЦА В ВОДНЫХ РАСТВОРАХ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Полупроводниковый сенсорный элемент для определения ионов свинца в водном растворе содержит в качестве чувствительного материала тонкую пленку сульфида свинца, допированную йодом и нанесенную на диэлектрическую подложку. Формирование пленки осуществляется путем ее осаждения из реакционной смеси, содержащей соль свинца, тиомочевину, трехзамещенный лимоннокислый натрий, гидроксид аммония, йодид аммония. Изобретение обеспечивает возможность получения полупроводникого сенсорного элемента на основе пленки сульфида свинца, допированной йодом, для селективного определения ионов свинца в водных растворах, характеризующегося высокой чувствительностью и динамичностью отклика, хорошей воспроизводимостью результатов, а также доступностью получения. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к аналитическому приборостроению, а именно к созданию устройств для определения ионов свинца в водных растворах на основе полупроводниковых чувствительных материалов, и может быть использовано для разработки полупроводниковых сенсорных элементов, что позволит решить ряд технологических и экологических задач, таких как: анализ природных и сточных вод; контроль качества продуктов питания в пищевой промышленности, определение содержания свинца в урине при медико-биологических исследованиях.

В настоящее время известно несколько разновидностей детекторов ионов свинца в водных растворах, полученных различными способами. Это, в первую очередь, пленочные свинец-селективные электроды и мембраны на основе сложных композиционных материалов. Например, пленка, содержащая в своем составе поливинилхлорид, дибутилфталат и триоксид молибдена, имеет чувствительность 29±2 мВ/pCPb2+ в диапазоне концентраций 1⋅10-1÷1⋅10-5 моль/л и характеризуется достаточной селективностью в присутствии ионов щелочных, щелочноземельных и переходных металлов [1]. Однако сенсоры на основе указанного композиционного материала требуют весьма трудоемких методов изготовления с использованием высокотемпературных и вакуумных технологий.

Для изготовления свинец-селективных мембран широко используются вещества органической природы. Например, мембрана на поливинилхлоридной матрице, состоящая из 1,8-бис[2-(дифенилфосфинилметил)фенокси]-3,6-диоксаоктана, дибутилфталата и тетракис-(4-фторфенил)борат калия), обладает чувствительностью к свинцу 29±2 мВ/pCPb2+ в диапазоне концентраций 1⋅10-1÷1⋅10-5 моль/л [2].

Также известна мембрана ионоселективного электрода для определения свинца, в состав которой в качестве активного компонента входят диамиды дипиколиновой (2,6-пиридиндикарбоновой) кислоты, в качестве пластификатора - диоктил себацинат, а в качестве липофильной добавки - хлорированный дикарболлид кобальта [3]. Предлагаемый электрод имеет высокую механическую и химическую стойкость, а также хорошую селективность к ионам свинца в присутствии меди, цинка и кадмия. Однако для изготовления материала мембраны необходимо провести предварительный синтез ряда сложных органических соединений.

Использование свинец-селективного электрода на основе мисфитного соединения (PbS)1.18TiS2, полученного синтезом в откаченных до 10-5 торр кварцевых ампулах при 800°С в течение 10 дней, позволяет определять свинец в водных растворах до концентрации 5.6⋅10-6 M с чувствительностью 26±2 мВ/pCPb2+. Однако процесс изготовления сенсорного материала очень длителен и требует достаточно глубокого вакуума [4].

Известен свинец-селективный электрод на основе смеси сульфидов свинца и серебра. Смесь PbS-Ag2S получали следующим образом: сульфиды осаждали совместно из 0.1 M водных растворов нитратов действием избытка Na2S с последующим промыванием водой декантацией до отрицательной реакции на сульфид-ионы и высушиванием при 368-378 K. Шихту для прессования готовили растиранием указанной выше смеси сульфидов до размера зерен 10-20 мкм. Ионоселективные мембраны получали прессованием смеси при давлении 4-5 т/см2 в течение 2 минут с нагреванием до 498 K. Последующий отжиг мембран проводили при 598-698 K на протяжении 3-5 часов в атмосфере сероводорода или аргона. Электроды представляли собой мембрану диаметром 10 мм и толщиной 2 мм, вклеенную эпоксидной смолой в пластиковый корпус с электродом сравнения. Описанный свинец-селективный электрод отличается сложной многостадийной технологией изготовления, которая требует специального оборудования. Сенсоры на его основе имеют чувствительность до 10-6 моль/л [5].

Также известен состав халькогенидной стеклянной мембраны свинец-селективного электрода, состоящей из смеси PbS, AgI и GeS2. Получение материала мембраны происходит в запаянных ампулах с остаточным давлением 10-2 Па при температуре 1300 K в течение 24 часов. Охлаждение проводят посредством закалки расплава со скоростью 100 K/с. Из полученных слитков нарезают плоскопараллельные диски (мембраны) толщиной от 1 до 5 мм, которые вклеивают в корпус электрода. Полученные таким образом халькогенидные стеклянные электроды на основе стекол системы "сульфид свинца - йодид серебра - дисульфид германия" имеют широкий диапазон измеряемых концентраций ионов свинца вплоть до 10-6 моль/л. Однако, как указано выше, для смеси PbS и Ag2S [5] синтез материала электрода весьма трудоемок и требует использования высокотемпературных нагревательных печей [6].

Известен свинец-селективный электрод на основе тонкой пленки, состоящей из композиции Pb-Ag-I-As-S. Халькогенидную массу получали из высокочистых элементов при температуре 1000 K в запаянных кварцевых ампулах с остаточным давлением 10-2 Па в течение 5-10 часов. Затем полученную массу лазерным пульсационным осаждением наносили на кварцевую подложку. Осаждение проводили в среде азота при комнатной температуре, чтобы исключить окисление пленки. Толщина осажденных слоев находилась в пределах от 100 до 1000 нм. Рассматриваемые сенсорные элементы на основе халькогенидных стекол имеют отклик к ионам свинца в водном растворе в области концентраций 10-1÷10-7 моль/л. Время отклика составляет от 1,0 до 1,5 минут в области концентраций 10-5÷10-7 моль/л и от 10 до 30 с в концентрационном интервале 10-1÷10-4 моль/л. Максимальная чувствительность сенсора составила 27-29 мВ/pCPb2+ при пределе обнаружения свинца 10-7 моль/л [7]. Однако свинец-селективный электрод на основе халькогенидного стекла Pb-Ag-I-As-S имеет чувствительность в относительно узком диапазоне концентраций ионов свинца, а также трудоемкую многооперационную процедуру изготовления сенсорного материала, требующую использования сложного технологического оборудования.

Таким образом, перед авторами стояла задача в разработке полупроводникового сенсорного элемента на основе гидрохимически осажденной пленки сульфида свинца, допированной йодом, для селективного определения ионов свинца в водных растворах, характеризующегося высокой чувствительностью, более низким пределом обнаружения, хорошей воспроизводимостью результатов, а также в использовании относительно простого и доступного способа изготовления материала сенсорного элемента по сравнению с аналогами. На сегодняшний день неизвестны такие сенсорные элементы для анализа водных сред, получаемых гидрохимическим осаждением.

Решение поставленной задачи достигается следующим образом. Способ получения полупроводникового сенсорного элемента заключается в том, что чувствительный слой формируют в одну стадию путем химического осаждения в реакторе из молибденового стекла на диэлектрическую подложку из реакционного раствора, содержащего (моль/л): соль свинца - 0.02÷0.20; цитрат натрия - 0.10÷0.30; тиомочевину - 0.20÷0.40; гидроксид аммония - 2.50÷4.00; йодид аммония - 0.05÷0.25, при температуре 343÷368 K и времени осаждения от 45 до 120 минут.

Процесс осаждения проводили при температуре 343-368 K в течение 45-120 мин. При этом на подложке образуется пленка, фазовый состав которой соответствует сульфиду свинца. Осаждение основано на реакции гидролитического разложения тиомочевины в щелочной среде с образованием сульфид-ионов, которые впоследствии связываются с ионами свинца. Введение в реакционный раствор комплексонообразующего агента - трехзамещенного лимоннокислого натрия - замедляет скорость протекания реакции образования сульфида свинца за счет образования дополнительных прочных комплексов ионов свинца с цитрат-ионами [8], что обеспечивает синтез пленок толщиной до 600 нм. Среда реакционного раствора задается гидроксидом аммония. Введенный в реакционную смесь йодид аммония легируют пленку ионами I-. Установлено, что введенная добавка влияет на морфологию и текстуру пленки.

Данное влияние основано на явлении суперкомпенсации основных носителей заряда полупроводниковой пленки, имеющим место при допировании халькогенидов свинца галогенами. Вероятно, при допирующем действии галогенидов существует определенный механизм, благодаря которому материал приближается к собственному типу проводимости. При введении электроактивной примеси, в частности йода, может значительно возрастать концентрация собственных дефектов (например, вакансий свинца), компенсирующих действие вакансий примеси [9]. Это обеспечивает более высокую чувствительность материала к адсорбционно-поверхностным явлениям.

При варьировании концентраций компонентов реакционной смеси удалось получить слои с максимальной чувствительностью к ионам свинца в водном растворе. В таблице 1 приведены результаты чувствительности к ионам свинца в растворе пленок PbS, синтезированных из реакционной смеси при варьировании ее компонентного состава и условий осаждения.

Из приведенной таблицы видно, что наибольшая чувствительность к ионам свинца в водном растворе получена при условиях осаждения, соответствующих примеру 2. Также стоит отметить, что введение в реакционный раствор ионов йода во всех случаях дает положительную динамику увеличения чувствительности (примеры 2, 6, 10). Варьирование времени и температуры осаждения, а также концентраций основных компонентов реакционной смеси не однозначно влияют на чувствительность сенсорного элемента на основе сульфида свинца к ионам свинца в водном растворе.

Работоспособность сенсорного элемента на основе пленки сульфида свинца проверяли путем измерения чувствительности его к ионам свинца в воде. Для этого определяют ЭДС электрохимической ячейки вида:

.

Значение разности потенциалов электродной пары измерялось универсальным мультиметром. Рабочие (модельные) растворы в диапазоне концентраций от 1.5⋅10-2 до 1.5⋅10-8 моль/л готовили методом последовательного разбавления исходного раствора нитрата свинца.

Проведенные исследования данных сенсорных элементов показали наличие отклика к ионам свинца во всем диапазоне концентраций модельных растворов. На фиг. 1 представлена электродная функция сенсорного элемента на основе сульфида свинца, допированного йодом.

Угловой коэффициент свинцовой функции равен 38 мВ/ΔрС.

Важной характеристикой для практического использования полупроводникового сенсорного элемента, полученного по заявленному способу, является полнота регенераций чувствительного элемента, изготовленного на его основе, после предыдущего измерения путем выдержки в течение 10-30 минут в дистиллированной воде. Это определяет его такое важное свойство, как многоразовый характер использования.

Исследуемые сенсорные элементы обладают достаточно малым временем установления потенциала, составляющее 25-30 секунд, и дрейфом потенциала в течение 15 суток не более ±2 мВ.

Коэффициенты селективности сенсорного элемента по отношению к свинцу в присутствии меди, никеля и цинка составили 1.27, 0.22 и 0.44 соответственно. Данные значения указывают на то, что мешающее влияние на свинцовую функцию оказывает только ионы меди.

Таким образом, полупроводниковый сенсорный элемент на основе пленки сульфида свинца, допированной йодом, полученной по сравнительно простой гидрохимической технологии, обладает максимальной чувствительностью и избирательностью к ионам свинца в водных растворах и может быть применен для анализа технологических вод, сбросов гальванических производств и экологического мониторинга природных водных объектов.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Состав мембраны ионоселективного электрода для определения ионов свинца. Патент RU 2470289. Подвальная Н.В., Захарова Г.С. 2012.

2. Мембрана свинец-селективного электрода. Патент RU 2054666, Пятова Е.Н., Копытин А.В., Ильин Е.Г., Баулин В.Е., Цивадзе А.Ю., Цветков Е.Н., Буслаев Ю.А. 1996.

3. Состав мембраны ионоселективного электрода для определения ионов свинца. Патент RU №2315988, МПК G01N 27/333, 2008. Кирсанов Д.О., Рудницкая A.M., Бабаин В.А., Полылин Е.Н., Легин К.А., Легин А.В., Селезнев Б.Л. 2008.

4. Свинец-селективный электрод на основе мисфитного соединения (PbS)1.18TiS2. / Т.В. Великанова, А.Н. Титов, Н.Н. Шишминцева // Журнал аналитической химии. - 2000. - Т. 55. - №11. - С. 1172-1175.

5. Свинец-селективные электроды на основе сульфидов свинца и серебра / Ю.В. Власов, Ю.Е. Ермоленко, О.А. Исхакова // Журнал аналитической химии. - 1979. - Т. - XXXIV. - №8. - С. 1522-1526.

6. Состав халькогенидной стеклянной мембраны электрода для определения ионов свинца. Патент RU 2034289. Власов Ю.Г., Бычков Е.А., Легин А.В. 1995.

7. Yu. Mourzina, M.J. Schöning, J. Schubert, W. Zander, A.V. Legin, Yu.G. Vlasov, P. Kordos, H. Lüth / A new thin-film Pb microsensor based on chalcogenide glasses // Sensors and Actuators B. - 2000. - V. 71. - P. 13-18.

8. Лурье Ю.Ю. Справочник по аналитической химии // изд. Химия, М., 1971, с. 268.

9. Особенности самокомпенсации донорного действия галогенов в теллуриде свинца / Кайданов В.И., Немов С.А., Равич Ю.И., Дереза А.Ю. // ФТП. - 1985. - Т. 19. - В. 10. - С. 1857-1860.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 211.
29.04.2019
№219.017.3e30

Блочная быстросъемная защита трубопроводов аэс

Изобретение относится к области теплоэнергетики, в частности к оборудованию АЭС, и касается тепловой изоляции и радиационной защиты трубопроводов, осуществляемых одновременно. Блочная быстросъемная защита трубопроводов АЭС содержит скрепленные замками теплоизоляционные блоки, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002686428
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47eb

Решётчатая аэродинамическая поверхность

Решетчатая аэродинамическая поверхность содержит силовую раму, состоящую из двух боковин, корневого и концевого планов в виде металлических пластин, и опоры крепления силовой рамы к механизму управления решетчатой аэродинамической поверхностью. Внутри силовой рамы, выполненной с пазами,...
Тип: Изобретение
Номер охранного документа: 0002686593
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.481d

Комплекс для испытания алгоритмов управления электроэнергетической системой

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении надежности электроэнергетической системы. Комплекс для испытания алгоритмов управления ЭЭС содержит: блок моделирования, аналоговый усилитель и блок управления, при этом блок моделирования...
Тип: Изобретение
Номер охранного документа: 0002686641
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.48b8

Способ определения уравновешенности и оптимального положения противовеса штанговой глубинно-насосной установки

Изобретение относится к нефтедобывающей промышленности и может быть использовано в станциях управления штанговыми глубинно-насосными установками - ШГНУ - для определения степени уравновешенности механизма и оптимального положения противовеса на кривошипе станка-качалки. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002686787
Дата охранного документа: 30.04.2019
24.05.2019
№219.017.5ef8

Способ выплавки многокомпонентной латуни

Изобретение относится к области металлургии, в частности к выплавке многокомпонентных деформируемых латуней, предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного триботехнического износа. Способ выплавки...
Тип: Изобретение
Номер охранного документа: 0002688799
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.7195

Устройство для производства воды из воздуха

Устройство предназначено для получения пресной воды из атмосферного воздуха. Устройство для производства воды из воздуха содержит источник сжатого воздуха, подключенный через регулирующий вентиль к входу вихревой трубы Ранка-Хирша. С «горячего» и «холодного» выходов вихревой трубы потоки...
Тип: Изобретение
Номер охранного документа: 0002689592
Дата охранного документа: 28.05.2019
07.06.2019
№219.017.753b

Способ токарной обработки

Способ включает придание заготовке вращательного движения с частотой вращения Гц, смещенной от частоты собственных колебаний Гц технологической системы станка. Предварительно измеряют волнистость поверхности заготовки в её поперечном сечении, частоту вынужденных колебаний выбирают как взаимно...
Тип: Изобретение
Номер охранного документа: 0002690771
Дата охранного документа: 05.06.2019
22.06.2019
№219.017.8e50

Проволока для сварки среднеуглеродистых среднелегированных броневых сталей

Изобретение может быть использовано для получения сварных соединений из среднеуглеродистых среднелегированных броневых сталей. Сварочная проволока содержит компоненты в следующем соотношении, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо –...
Тип: Изобретение
Номер охранного документа: 0002692145
Дата охранного документа: 21.06.2019
17.07.2019
№219.017.b528

Инструментальный материал на основе карбидов

Изобретение относится к твердым и износостойким металлокерамическим инструментальным материалам на основе карбидов вольфрама, титана, тантала с цементирующей карбиды кобальтовой связкой. Зерна карбидов имеют сферическую форму размером от 0,1 до 1 мкм. Каждое зерно карбида окружено прослойкой...
Тип: Изобретение
Номер охранного документа: 0002694444
Дата охранного документа: 15.07.2019
23.07.2019
№219.017.b7ff

Способ контроля температуры монолитного бетона в перекрытии при его выдерживании и устройство для его осуществления

Способ и устройство для его осуществления относятся к области строительства и могут быть использованы для контроля температуры монолитного бетона в монолитных и сборно-монолитных перекрытиях зданий при его выдерживании. Технический результат - повышение точности измерений температуры наружной...
Тип: Изобретение
Номер охранного документа: 0002695177
Дата охранного документа: 22.07.2019
Показаны записи 71-73 из 73.
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
02.09.2019
№219.017.c5ed

Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка

Изобретение может быть использовано в гальванотехнике при утилизации хромсодержащих стоков. Способ извлечения хрома (VI) из хромсодержащих растворов гальванических производств с получением малообводненного железо-хромсодержащего осадка включает введение в хромсодержащий раствор...
Тип: Изобретение
Номер охранного документа: 0002698810
Дата охранного документа: 30.08.2019
+ добавить свой РИД