×
25.08.2017
217.015.aafb

Результат интеллектуальной деятельности: СПОСОБ ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ В ДВУХКАНАЛЬНОЙ СКАНИРУЮЩЕЙ СИСТЕМЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью восстановления изображения в целом. Способ восстановления изображений заключается в применении оператора восстановления одномерного изображения к массиву данных отдельных строк и столбцов двух матриц наблюдения с последующей интерполяцией и объединением двух изображений в одно восстановленное изображение без пропусков строк и столбцов. 1 табл.

Изобретение относится к пассивным [1, 2] двухканальным сканирующим системам наблюдения, работающим в оптическом, инфракрасном или миллиметровом диапазонах длин волн.

Система наблюдения состоит из двух измерительных каналов. Каждый канал содержит приемное устройство - приемник, регистрирующий излучаемое объектами поле в ограниченном объеме пространства в соответствии со своей диаграммой направленности (ДН), а также тракт первичной обработки принимаемых сигналов. Приемники одновременно сканируют зону обзора размером M×N элементов дискретизации по азимуту и углу места. Первый приемник движется непрерывно вдоль строки (по азимуту) со съемом данных с малым шагом дискретизации h и осуществляет переход к другой строке с увеличенным шагом k1⋅h, k1>1, где (k1-1) - число пропущенных подряд строк. Второй приемник, наоборот, движется непрерывно вдоль столбца (по углу места) со съемом данных с малым шагом дискретизации h и осуществляет переход к другому столбцу с увеличенным шагом k2⋅h, k2>1, где (k2-1) - число пропущенных подряд столбцов.

По результатам первичной обработки формируются две матрицы наблюдений: Y1={y1(i,j)}, , и Y2={y2(i,j)}, , . Пропущенные при сканировании строки и столбцы в матрицах Y1 и Y2 присутствуют, но не рассматриваются.

Модель наблюдений имеет следующий вид:

, ,

,

, ,

где α(i,j) - весовая функция с областью определения , , представляющая нормированную ДН приемника; X={x(i,j)} - матрица искомого изображения с элементами x(i,j), подлежащими восстановлению на множестве элементов дискретизации , ; P1(i,j) и p2(i,j) - шумы аппаратуры в приемных каналах в виде белого шума.

Задача заключается в восстановлении изображения X={x(i,j)} на множестве элементов дискретизации , путем обработки полученных наблюдений Y1={y1(i,j)} и Y2={y2(i,j)}.

Такая задача относится к классу некорректных обратных задач и решается как в пространственной, так и частотной области [3] с применением методов регуляризации, повышающих устойчивость решения.

Оптимальное решение задачи восстановления изображения X с позиции известных критериев [4] для двумерной модели измерений (1) в пространственной области требует больших предварительных вычислительных затрат и памяти при обращении матриц, что снижает устойчивость решения. При больших значениях М и N реализовать матричные методы не удается.

Оптимальное решение в частотной области [5] требует обработки всех строк и столбцов на множестве , , что достигается интерполяцией пропущенных строк и столбцов матриц Y1 и Y2. Несмотря на удобство реализации частотных методов, ошибки интерполяции наблюдений существенно снижают точность восстановления изображений.

На практике целесообразно перейти от (1) к упрощенной модели наблюдений, не учитывающей пропуски строк и столбцов:

,

где α1(j) и α2{i) - соответственно центральное горизонтальное и вертикальное сечения ДН, причем α1(0)=α2(0); - случайные аддитивные составляющие, порожденные шумами аппаратуры и ошибками аппроксимации при переходе от (1) к (2).

Число оцениваемых параметров в (2) значительно меньше, чем в (1).

В рамках модели (2) ставится одномерная задача независимого восстановления изображений в i-x строках Х1(i) и j-x столбцах Х2(j) матрицы X путем обработки i-х строк Y1(i), матрицы Y1 и j-x столбцов Y2(j), матрицы Y2. Задача решается известными способами.

В качестве прототипа может быть рассмотрен любой способ восстановления одномерного изображения: матричный способ [4] или способ фильтра Винера [5], действие которых применительно к поставленной задаче сводится к следующему:

1. На вход подается i-я строка Y1(i) первой матрицы наблюдений Y1 или j-й столбец Y2(j) второй матрицы наблюдений Y2 - одномерный массив числовых данных объема М или N.

2. К массиву данных применяется оператор восстановления, основанный на пространственной или частотной обработке.

3. В результате действия оператора восстановления на выходе получается i-я строка Х1(i) или j-й столбец Х2(j) восстановленного изображения в виде нового массива данных объема М или N.

Совокупность восстановленных строк X1(i), и столбцов X2(j), N дает матрицу Xp решетчатой структуры восстановленного изображения, в которой пропущенные строки и столбцы присутствуют, но не рассматриваются.

Такой способ формирования изображений обладает следующим недостатком: решетчатая структура матрицы Xp, полученная при шаге сканирования большем, чем шаг дискретизации (k>1), дает прореженное по строкам и столбцам изображение, что затрудняет или делает невозможным распознавание изображений объектов наблюдения.

Технический результат направлен на устранение указанного недостатка, а именно на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью восстановления изображения в целом.

Технический результат предлагаемого технического решения достигается тем, что способ восстановления изображений в двухканальной сканирующей системе заключается в том, что при наблюдении зоны обзора с помощью двух приемников, первый из которых дает матрицу наблюдений Y1 с пропусками строк, а второй - матрицу наблюдений Y2 с пропусками столбцов, обрабатывают наблюдаемые i-е строки Y1(i) матрицы Y1 и наблюдаемые j-е столбцы Y2(j) матрицы Y2 оператором восстановления одномерных массивов и в результате этой обработки получают в той же нумерации i-е строки Х1(i) матрицы Х1 восстановленного изображения по строкам и j-е столбцы Х2(j) матрицы Х2 восстановленного изображения по столбцам, отличающийся тем, что пропущенные строки матрицы Х1 восстанавливают путем линейной интерполяции соседних не пропущенных строк и получают матрицу , а пропущенные столбцы матрицы Х2 восстанавливают путем линейной интерполяции соседних не пропущенных столбцов и получают матрицу , затем все соответствующие пары элементов матриц и сравнивают к заданным уровнем γ и выбирают из каждой пары один элемент, наиболее близкий в этому уровню, после чего выбранные элементы помещают в матрицу X, которая представляет восстановленное изображение без пропусков строк и столбцов.

Способ осуществляют следующим образом:

1. Два приемника одновременно сканируют зону обзора размером M×N элементов дискретизации по азимуту (по j) и углу места (по i).

2. По результатам первичной обработки формируются две матрицы наблюдений: Y1={y1(i,j)}, , и Y2={y2(i,j)}, , , где k1, k2>1. Первый приемник дает матрицу наблюдений Y1 с пропусками строк, а второй - матрицу наблюдений Y2 с пропусками столбцов. Пропущенные при сканировании строки или столбцы присутствуют в матрицах Y1 и Y2, но не рассматриваются.

3. Наблюдаемые i-e строки Y1(i) матрицы Y1 и наблюдаемые j-е столбцы Y2(j) матрицы Y2 обрабатывают оператором восстановления одномерных массивов и в результате этой обработки получают в той же нумерации i-e строки X1(i), матрицы Х1 восстановленного изображения по строкам и j-е столбцы Х2(j), матрицы Х2 восстановленного изображения по столбцам.

4. Пропущенные строки матрицы Х1 заполняются методом линейной интерполяции: между соседними наблюдаемыми строками матрицы Х1 помещаются k1-1 строк по числу k1-1 недостающих элементов дискретизации угла места, а элементы этих строк находятся линейной интерполяцией соответствующих элементов i-й и (i+1)-й строк матрицы Х1 по формуле:

Δх1=(х1(i+k1,j)-х1(i,j))/k1,

x1(i+i1,j)=y(i,j)+Δx1⋅i1, , , .

Подобным образом заполняются пропущенные столбцы матрицы Х2:

Δх2=(х2(i+k2,j)-х2(i,j))/k2,

x2(i,j+j2)=x2(i,j)+Δx2⋅j2, , , .

5. После интерполяции получается матрица с повышенным разрешением по азимуту и матрица с повышенным разрешением по углу места.

Затем матрицы и объединяются в M×N-матрице оценок искомого изображения X следующим образом.

6. Все пары , соответствующих элементов матриц и , сравниваются с заданным уровнем γ. Из двух элементов и выбирается один элемент, наиболее близкий к этому уровню. Он запоминается как i-й, j-й элемент x(i,j) матрицы X, представляющей восстановленное изображение без пропусков строк и столбцов.

7. Уровень γ назначается человеком-оператором из физических соображений. Уровень может меняться в процессе наблюдения с целью повышения четкости отдельных деталей изображения.

Результаты моделирования. Способ реализовывался с применением операторов восстановления одномерных изображений в пространственной области (матричный метод) и частотной области (метод фильтра Винера). Методы показали близкую точность восстановления изображения вдоль строк и столбцов. Дополнительно небольшим порогом снимались шумовые эффекты на восстановленном изображении. При моделировании ширина ДН составляла (2m+1)×(2n+1)=7×7, отношение сигнал-шум (С-Ш) 30 и 50 при максимальной амплитуде 5, шаг по строкам и столбцам к=1, 2, 3, 4, размер объекта наблюдения L×L=5×5. ДН задавалась экспоненциальной функцией с квадратичным показателем степени. Уровень γ задавался числом 5.

В таблице представлены оценки среднеквадратического отклонения (СКО) ошибки восстановления изображения, полученные сравнением моделируемого и восстановленного изображений на множестве реализаций эксперимента, в зависимости от величины шага k по строкам и столбцам при разном отношении сигнал-шум.

В первой строке значений СКО даны результаты, полученные предлагаемым способом. Вторая строка значений СКО соответствует прототипу, когда пропущенные строки и столбцы предварительно обнулялись, и восстановленное изображение представляло собой решетчатую матрицу. В третьей строке значений СКО представлены результаты, полученные оптимальным матричным способом восстановления, принимаемым за эталон, при совместной обработке двух матриц наблюдения Y1 и Y2, подобно предложенному способу, но на основе двумерной модели измерений (1).

Оценка разрешающей способности изображений осуществлялась нахождением минимального расстояния dmin, измеряемого в количестве строк между двумя объектами, при котором они четко различались на восстановленном изображении. Разрешение dmin=2, соответствующее 1/2 ширины ДН, достигалось: для предложенного способа при шаге k=2, для прототипа - при шаге k=1, для эталона - при шаге k=3.

Предложенный способ отличается значительной простотой реализации и не имеет ограничений на размеры матрицы изображения. Он уступает в точности восстановления оптимальному способу, который, однако, можно реализовать только для небольших матриц изображения. Результаты моделирования показали приемлемое качество восстановленного изображения.

Способ может найти применение в существующих сканирующих системах наблюдения микроволнового диапазона [2], а также в системах оптического и инфракрасного диапазонов, предназначенных для обнаружения и распознавания объектов по их восстановленному изображению.

Литература

1. Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т./ Т. 1. М.: ИКИ РАН, 2014. 544 с.

2. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р.П. Быстрова и А.В. Соколова. М.: Радиотехника. 2008. 320 с.

3. Василенко Г.И., Тараторин A.M. Восстановление изображений. М.: Радио и связь, 1986. 304 с.

4. Патент RU 2 368 917 С1. Способ формирования изображений в многоканальных РТЛС и РЛС / В.К. Клочко. МПК: G01S 13/89. Приоритет 21.12.2007. Опубл.: 27.09.2009. Бюл. №27.

5. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006. 616 с.

Способ восстановления изображений в двухканальной сканирующей системе, заключающийся в том, что при наблюдении зоны обзора с помощью двух приемников, первый из которых дает матрицу наблюдений Y с пропусками строк, а второй - матрицу наблюдений Y с пропусками столбцов, обрабатывают наблюдаемые i-е строки Y (i) матрицы Y и наблюдаемые j-е столбцы Y (j) матрицы Y оператором восстановления одномерных массивов и в результате этой обработки получают в той же нумерации i-е строки Х (i) матрицы Х восстановленного изображения по строкам и j-е столбцы Х (j) матрицы Х восстановленного изображения по столбцам, отличающийся тем, что пропущенные строки матрицы Х восстанавливают путем линейной интерполяции соседних не пропущенных строк и получают матрицу , а пропущенные столбцы матрицы Х восстанавливают путем линейной интерполяции соседних не пропущенных столбцов и получают матрицу , затем все соответствующие пары элементов матриц и сравнивают к заданным уровнем γ и выбирают из каждой пары один элемент, наиболее близкий в этому уровню, после чего выбранные элементы помещают в матрицу X, которая представляет восстановленное изображение без пропусков строк и столбцов.
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ В ДВУХКАНАЛЬНОЙ СКАНИРУЮЩЕЙ СИСТЕМЕ
СПОСОБ ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ В ДВУХКАНАЛЬНОЙ СКАНИРУЮЩЕЙ СИСТЕМЕ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 96.
25.06.2018
№218.016.65f6

Фильтр компенсации помех

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся...
Тип: Изобретение
Номер охранного документа: 0002658651
Дата охранного документа: 22.06.2018
06.07.2018
№218.016.6cce

Матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным системам для малоразмерных космических аппаратов (МКА). Монолитная термостойкая диэлектрическая подложка содержит упорядоченно размещенные на поверхности конусообразные микропоры, заполненные твердым топливом. На центры оснований конусообразных микропор...
Тип: Изобретение
Номер охранного документа: 0002660210
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d6a

Адаптивный режекторный фильтр

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами. Адаптивный режекторный фильтр содержит измеритель доплеровской фазы...
Тип: Изобретение
Номер охранного документа: 0002660645
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.706a

Фильтр режекции помех

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002660803
Дата охранного документа: 10.07.2018
19.07.2018
№218.016.72a0

Пирофосфатно-аммонийный электролит контактного серебрения

Изобретение относится к области нанесения серебряных покрытий на медь и ее сплавы и может быть использовано в технологии электронных приборов, радиотехнической промышленности для нанесения декоративных покрытий, для серебрения волноводов и изделий сложной конфигурации, в качестве электролита...
Тип: Изобретение
Номер охранного документа: 0002661644
Дата охранного документа: 18.07.2018
24.07.2018
№218.016.73da

Фильтр режекции пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002661914
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73f5

Способ выделения спектральных отсчетов в многоканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение...
Тип: Изобретение
Номер охранного документа: 0002661913
Дата охранного документа: 23.07.2018
19.08.2018
№218.016.7d26

Способ обработки последовательности изображений для распознавания воздушных объектов

Изобретение относится к области цифровой обработки изображений. Технический результат заключается в повышении точности определения класса наблюдаемого воздушного объекта. Способ заключается: в генерации на основе 3D-моделей эталонных бинарных изображений воздушных объектов, в формировании...
Тип: Изобретение
Номер охранного документа: 0002664411
Дата охранного документа: 17.08.2018
13.12.2018
№218.016.a5fc

Фильтр компенсации пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002674467
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a620

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002674468
Дата охранного документа: 11.12.2018
Показаны записи 51-58 из 58.
09.10.2019
№219.017.d3a3

Способ двухэтапного восстановления радиотепловых изображений

Изобретение относится к пассивным системам наблюдения за объектами с помощью сканирующего радиометра миллиметрового диапазона длин волн. Достигаемый технический результат - повышение пространственного разрешения. Указанный результат достигается за счет того, что в результате сканирования...
Тип: Изобретение
Номер охранного документа: 0002702228
Дата охранного документа: 07.10.2019
09.02.2020
№220.018.010b

Способ формирования радиотеплового изображения объектов

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в пассивных системах ближнего зондирования наземных и воздушных объектов. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002713731
Дата охранного документа: 07.02.2020
23.04.2020
№220.018.1813

Способ определения пространственных координат движущегося объекта пассивной радиосистемой

Изобретение относится к пассивным радиосистемам, предназначенным для наблюдения за движущимися объектами в радиодиапазоне длин волн. Достигаемый технический результат – определение дальности до объекта в пассивном режиме работы радиоприемников и определение его пространственных координат....
Тип: Изобретение
Номер охранного документа: 0002719631
Дата охранного документа: 21.04.2020
30.05.2020
№220.018.2262

Способ нахождения пространственных координат объектов в пассивных системах видения

Изобретение относится к пассивным системам пространственного видения оптического, инфракрасного и радиотехнического диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в существующих пассивных системах наблюдения за объектами. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002722232
Дата охранного документа: 28.05.2020
15.07.2020
№220.018.3271

Способ определения пространственного положения и скорости в группе объектов системой доплеровских приемников

Изобретение относится к многопозиционным радиотехническим системам наблюдения за группой движущихся объектов, разрешимых по доплеровской частоте. Способ может найти применение в существующих многопозиционных радиотехнических системах обнаружения и траекторного сопровождения объектов, работающих...
Тип: Изобретение
Номер охранного документа: 0002726321
Дата охранного документа: 13.07.2020
08.08.2020
№220.018.3df4

Способ определения пространственных координат и скоростей объектов сканирующей многопозиционной радиосистемой

Использование: для создания многопозиционных радиосистем пеленгации объектов в радиодиапазоне длин волн на малой дальности. Сущность изобретения заключается в том, что способ определения пространственных координат и скоростей объектов сканирующей многопозиционной радиосистемой заключается в...
Тип: Изобретение
Номер охранного документа: 0002729459
Дата охранного документа: 06.08.2020
26.05.2023
№223.018.704e

Способ обнаружения движущихся объектов системой доплеровских приемников

Изобретение относится к области радиолокации, в частности к способам обнаружения движущихся объектов с помощью полуактивной многопозиционной системы доплеровских приемников с антенными решетками (АР), принимающих и обрабатывающих радиотехнические сигналы. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002796230
Дата охранного документа: 18.05.2023
17.06.2023
№223.018.7f47

Способ наблюдения за движущимися объектами многопозиционной системой приемников

Изобретение относится к многопозиционным сканирующим системам наблюдения за объектами в полуактивном и пассивном режимах. Система состоит из нескольких приемников (радиотехнических, радиометрических, оптических), принимающих сигналы отражения или излучения от объектов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002766569
Дата охранного документа: 15.03.2022
+ добавить свой РИД